

THE UNIVERSITY of EDINBURGH School of GeoSciences

Evaluating Tropospheric Ozone in UKCA with aircraft (IAGOS), satellite (OMI) and Ozonesonde observational data over South Asia

Alok Pandey¹, David Stevenson¹,

Alcide Zhao¹, Krishan Kumar², Luke Surl³, Brian Kerridge⁴, Richard Pope⁵

¹School of Geosciences, University of Edinburgh, Edinburgh, UK; ²School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India; ³CNRS/LATMOS, Place Jussieu, Paris, France; ⁴RAL CCLRC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, UK; ⁵School of Earth and Environment, University of Leeds, Leeds, UK

Email: Alok.Pandey@ed.ac.uk ACAM 2019 (26-28 June 2019)

(Image source: CCAC)

Tropospheric Ozone over South Asia

Li et al 2019 (PNAS): Observed surface O₃ up 1-3 ppb/yr in E China

Ziemke et al 2018 (ACP): Satellite trop. O_3 shows big (~15-20% of background ozone) rises from near East to S/E Asia

Zhang et al 2016 (Nature Geosci): Modelled tropospheric O₃ burden up; mainly driven by emission increases from S/E Asia

(SOGA Report 2017)

Methodology

Model: United Kingdom Chemistry and Aerosol (UKCA) v8.4 Nudged with ECMWF ERA-Interim Meteorological data Time varying emissions

Observations:

Aircraft - In-service Aircraft for a Global Observing System (IAGOS) Ozonesonde network data Satellite - OMI derived lower tropospheric (LT) ozone data (sufrace – 450 hPa)

Approximation/bias in UKCA and OMI O₃ comparison

OMI derived LT ozone data used in this work are monthly and have bias due to averaging kernels!

A more robust comparison is going on using applications of individual satellite averaging kernel on UKCA model data processing

Comparison of UKCA & OMI ozone DJF (Surface - 450hPa)

Comparison of UKCA & OMI ozone MAM (Surface - 450hPa)

Comparison of UKCA & OMI ozone JJA (Surface - 450hPa)

Comparison of UKCA & OMI ozone SON (Surface - 450hPa)

Scatter plots of UKCA and OMI

Scatter plots of UKCA and IAGOS

UKCA and Ozonesonde Vertical Profile Comparison

UKCA and Ozonesonde Vertical Profile Comparison

Inter comparison of UKCA, OMI and Ozonesonde Ozone over Delhi and Trivandrum for four seasons in 2009 (in DU)

Summary

We evaluate UKCA v8.4 simulation with ozone observations from (a) the OMI satellite instrument, (b) the IAGOS datasets and (c) Ozonesonde over South Asia. The major conclusions are:

- UKCA v8.4 shows an effective simulation of lower tropospheric (LT) ozone and seasonal variation over South Asia.
- UKCA is picking the right higher ozone at the LT MAM at Delhi and lower ozone in monsoon months at Delhi as well as Trivandrum.
- Lower troposphere UKCA, OMI and Ozonesonde ozone column is comparable in DJF & MAM over Delhi whereas during JJA & SON UKCA and OMI are comparable but far away from the Ozonesonde observations.

- The study will be extended for more time period and other air pollutants will be also incorporated; a newer UKCA model version (v11.0) will be used.
- Like to incorporate quality control observational data. If any one have any lead, please notify. Happy to collaborate!

Thank You!