Simultaneous observations of formaldehyde and glyoxal using MAX-DOAS as part of international remote sensing network SKYNET

Syedul Hoque¹, Hitoshi Irie¹, Alessandro Damiani¹, Prajjwal Rawat² and Manish Naja²

¹Center for Environmental Remote Sensing (CEReS), Chiba University, Japan

²Aryabhatta Research Institute of Observational Sciences (ARIES), Nainital, India

SKYNET network

Ground-based remote sensing network for aerosol-cloud-radiation researches

Still expanding with one main focus on satellite validations. (GCOM-C/SGLI, EarthCARE, GOSAT, GOSAT-2, Himawari-8/9, GEMS, ...).

Fig. SKYNET/skyradiometer site map. Sites with data available as of July 30, 2013 are shown in red.

Fig. SKYNET workshops held at Chiba(Japan) in July 2013, at Hefei(China) in September 2014, and at Rome(Italy) in March 2016. <u>Next workshop will be held in India</u>.

http://atmos3.cr.chiba-u.jp/skynet/

Download

Primary instrument: sky radiometer

Sky radiometers at the Chiba site

Retrieved products

Aerosol Optical Depth Single Scattering Albedo Real and imaginary refractive index Angstrom exponent Aerosol size distribution Water Vapor, Ozone

MAX-DOAS as part of SKYNET

http://atmos3.cr.chiba-u.jp/skynet/

MAX-DOAS instruments at the Chiba site

Retrieved products

Volatile Organic Compound(VOCs)

- Aerosols at 357 & 476 nm
- NO₂(UV&vis), SO₂, O₃, H₂O
- Formaldehyde (HCHO), Glyoxal (CHOCHO)

Why VOCs are important ?

Biogenic emissions

Important VOC tracers in the atmosphere

The lifetime of HCHO and CHOCHO are ~ 2-3 hours

The sinks of HCHO and CHOCHO are photolysis, reaction with OH, and deposition

Can be used as tracer to classify dominant VOC emission sources (i.e., biogenic/anthropogenic/biomass burning)

Emission sources of CHOCHO & HCHO

Oxidization of biogenic VOCs

Biogenic Sources

Oxidization of biogenic VOCs CHOCHO

Direct emission from anthropogenic and biomass burning

Virtually no direct emission except biomass burning

<mark>Similar</mark> Life time, sink

<mark>Difference</mark> Source , yield

Definition of the ratio, R_{GF}

 [CHOCHO]						
$\mathbf{K}_{GF} = - \mathbf{[HCHO]}$						
	Reference	<i>R_{GF}</i> under biogenic influence (0.04 – 0.07)	<i>R_{GF}</i> under anthropogenic influence (< 0.03)	С		
	Mesothe response of Righeto differente VOC emission (satellite measurements)					
	DiGangi et al., 2012 (in situ measurements)	Lower	Higher			
	Miller et al., 2014 (Satellite measurements)	High and low depending on type of VOC	Intermediate			
	J.Kaiser et al., 2015 (Air borne in situ measurements)	High and low depending on type of VOC	Variable 8	3		

Methodology : MAX-DOAS

Multiple Axis Differential Optical Absorption Spectroscopy

Measure scattered sunlight at different elevation angle covering the UV-Visible range (310-515 nm)

The measured spectra is analyzed using the **DOAS method** which is based on the Beer – Lambert law

$$I(\lambda) = I_o exp^{[-L\sum(\sigma_j.c_j) + \varepsilon_R(\lambda) + \varepsilon_M(\lambda))]}$$

Retrieval algorithm for MAX-DOAS observations

Japanese MAX-DOAS profile retrieval algorithm v2

Sites: Phimai, Thailand

Phimai is Rural Site, no direct influence of any anthropogenic and industrial emission

Period : 2014/Oct – 2016/Sep

Wet SeasonDry Season **Oct-May** Jun-Sep Influence of biomass burning (Jan-Apr)

Pantnagar, India

- Semi-urban site
- Beside a roadside so expected to be influenced by vehicular emissions.
- Few industries located in nearby cities ~ 12 ~25 km
- small local airport located ~ 3km of the site.

Period : 2017/Jan 2017/November	Winter Dec-Feb	Spring Mar-May Biomass burning
19	Autumn Sep-Nov Biomass burning	Summer Monsoon Jun-Aug

Results and Discussion

Monthly time series in Phimai

Error bars are indicating the standard deviation

Supporting data for biomass burning

Carbon Monoxide (CO) Total columns from AIRS satellite

burning

Monthly Time Series in Pantnagar

Error bars are indicating the standard deviation

Dominant VOC sources in Pantnagar

In addition, vehicular and industrial emissions also impact the VOC concentrations in Pantnagar

Biogenic VOC sources in Pantnagar

Positive correlation is expected among vegetation index (EVI/NDVI), HCHO, and CHOCHO if biogenic emission are dominant source

Response of R_{GF} in Phimai

HCHO & CHOCHO data of the same date and time were used to estimate the R_{GF}

BB: Biomass Burning

BE: Biogenic Emissions

Reference	<i>R_{GF}</i> under anthropogen ic/biomass burning	<i>R_{GF}</i> under biogenic emission
Vrekoussis et al (2010)		
Kaiser et al (2015)		
This study		

Response of *RGF* **in Pantnagar**

Error bars are indicating the 2σ standard error

Response of R_{GF}

Comparison with literature values

Reference	Measurement platform	<i>R_{GF}</i> under anthropogenic or/and biomass burning
Vrekoussis et al (2010)	Satellite	< 0.03
Di Gangi et al (2012)	In- situ	~ 0.03
Miller et al (2014)	Satellite	< 0.04
Ortega et al (2015)	MAX-DOAS	< 0.04
Zarzana et al (2017)	In-situ	~ 0.038
This study	MAX-DOAS	Mostly ~ <0.035

Most of the studies find that, under the influence of anthropogenic and biomass burning the mean R_{GF} tends to be ~< 0.04.

Conclusions

Conclusions

2. Summarizing the existing literature values and from our observations, the R_{GF} tends to be < 0.04 under the influence of anthropogenic and biomass burning

Reference	Measurement platform	<i>R_{GF}</i> under anthropogenic or/and biomass burning
Vrekoussis et al (2010)	Satellite	< 0.03
Di Gangi et al (2012)	In- situ	~ 0.03
Miller et al (2014)	Satellite	< 0.04
Ortega et al (2015)	MAX-DOAS	< 0.04
Zarzana et al (2017)	In-situ	~ 0.038
This study	MAX-DOAS	< 0.04

Data availability/ collaboration

Hitoshi Irie hitoshi.irie@chiba-u.jp

Syedul Hoque shoque@chiba-u.jp

http://atmos3.cr.chiba-u.jp/skynet/

Thank you for your Attention

Comparison of *R*_{*GF*} **between two sites**

Anthropogenic + Biomass Burning

Biomass Burning

- Despite being two different sites, R_{GF} under the influence of biomass & anthropogenic emissions are found to be similar and mostly < 0.04.

HCHO diurnal variation

CHOCHO diurnal variation

CHOCHO, HCHO, NO2 diurnal variation in Pantnagar

Slant column density and profile

Comparison with OMI and GOME-2 at Phimai

Comparison with OMI and GOME-2 at Pantnagar

Comparison with OMI RGF at Phimai

Comparison with CHASER model for Phimai

Comparison with CHASER model for Phimai

Correlation between VOC tracers and vegetation

Vrekoussis et al (2010)

CHOCHO formation from isoprenes

Miller et al (2017)

HCHO formation from isoprenes

Mao et al (2013)