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Why do Indonesian fires matter?
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Source : http://earthobservatory.nasa.gov/Features/IndonesianFires/pagel.php

Regional impact on air quality and health

O Indonesian fires have impact on entire tropical Asia:
Indonesia, Singapore, Malaysia, Thailand

O Air quality measurements: the 1-hour PM, ¢
concentration reached a record high of 471ug/m? at
stations in the west of Singapore, and AERONET
daily AOD was over 6 at stations in Borneo

O Costed $16.1 billion loss (~1.9% of its GDP in 2015)

Global impact on carbon cycle and radiation

O Tropical peatland fires emit >300Mg (1Mg=1 ton) C
per hectare, compared to 7.5-70MgC ha! from
other habitat types (Cochrane, 2003).

0 One of the world’s largest CO, emitter (Hooijer et al.
2006). Indonesia fires released 227127 Tg of carbon
to atmosphere in Sept-Oct 2015, of which 83% is in

CO, (692 million tons CO,) (Huijnen et al. 2016).




Projection of fire carbon emissions-

Based on 7 CMIP5
models

in the absence of
action to limit
peatland burning
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Motivation: Advance our understanding on Indonesian fires

Fires are started by human

Establish palm oil plantation  Convert forest to pasture

Spread underground
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neatland
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O Fire activities are a result of
interplay between land use
practices and climate variability

O Fires are commonly employed
in land management to clean
the fields, for example...

O But fires could spread
underground into degraded
peatlands, and become out of
control in drought condition,
especially during El Nino years

(Tacconi, 2016 Nature).




Study region

MODIS fire counts over Indonesia: September/October 2015:
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Parker et al. (2016)
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= High frequencies of fire counts collocated with in both southern Sumatra and southern

Kalimantan during 2015 Indonesia fires
= Peatlands occupy 11-16 % land, but contribute 60-90% smoke and haze




Known and Unknown: Indonesian fires (1979-2016)
Bext (fire proxy) anomaly in Southern Kalimantan
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Known:

= Human impact: fire emission increased after 1996, likely attributable to the Mega rice project

= Climate driver: clear finger prints of El Nifio with large fires occurring in El Niflo years after 1996
Unknown: there was an exception- no severe fires in 2009, although it is an El Nifio year stronger than
2006, implying that the severity of fires did not always follow the magnitude of El Nifio=> investigate



Unknown

1. Is the severity of Indonesian fires connected with
the different types of El Nino and Asian winter
monsoon?



Definition I: El Niho types/location (Aug-Oct of 1979-2016)
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Comparison of Indonesian Drought and Fires: EP vs. CP types
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El Nino years:

Question 1:

Is the severity of
Indonesian fires
connected with the
different types of El
Nino and Asian
winter monsoon?

O EP>CP: drought and
fires are more
intense and
prolonged in EP than
in CP
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Both El Nino and 10D
- Drought - Indonesian Fires

= Both El Nifio and IOD
play important role
in modulating
severity of
Indonesian fires
through drought
condition

Walker circulations
over Pacificand Indian
Oceans are consolidated over
Indonesia, resulting in a severe
drought and thus devastating
burning of forest and peatland.

‘ Warm Ocean > Indian Ocean

me ”  Dipole (10D)
‘ Cool Ocean - El Nifio lllustrated by Theophilus Griswold 11



Unknown

2. How does Indian Ocean Dipole (I0OD) impact
Indonesian fires through interacting with the
different types of El Nino?



Definition II: Different 10D phases
EP EIl Nino type
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Definition II: Different 10D phases
CP EI Niﬁo type
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Comparison of Indonesian Drought and Fires:
positive vs. negative 10D

__ Droughtcode  _ Fire proxy - . ;
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Summary: Comparison of Indonesian Drought and Fires
in three group of El Nino-10D

Drought code Fire proxy
MeanBext (km)

800 oy
_ ’ O the severity of Indonesian fires is

connected with the different types of El
Nifio: drought and fires are more intense
and prolonged in EP than in CP (EP>CP);

600+

400+

 The phase of 10D also plays an important
role in modulating growth of Indonesian
s fires through drought condition: drought

JFMAMJJASOND  JFMAMJJASOND and fires are weaker if the 10D is negative

CLIM: El Nino-1OD groups: El Nino years: (Positive IOD S negative IOD)
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Physical explanation of distinct fire activities:

Walker circulation (streamline) and cloud fraction anomalies (shaded) along equator Aug-Oct (MERRA?2)
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O Anomalous sinking motion over Indonesia which results in drought is stronger in EP group
O Anomalous sinking motion is weaker over Indonesia in two CP groups, especially weaker and moving
westward when 10D is negative
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We found that Indonesian drought and fires:
O EP>CP;

7|1 U Positive IOD > negative IOD.

|| Contribution of this study: advances the

previous understanding of the role of climate
variability on Indonesian fire activity, by

1| considering the modified monsoon rainfall by

(i) the presence of different types of El Nifio
and (ii) the interaction between El Niflo and
the Indian Ocean Dipole (10D).

Implication: drought early warning and air
guality forecast

Paper: “Connecting Indonesian fires and drought with the type of El Nifio and the phase of
Indian Ocean Dipole during 1979-2016”, JGR-atmosphere, July 2018 (6 citations so far ©).




Thank you



Implication

The outcome of this study can be applied to
and
in Indonesia and neighboring
countries by identifying the type of El Nifio +
the phase of IOD in advance.
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SSTA and Precip in Aug-Oct
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Climate and fire in Aug-Oct
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Source: J. Miettinen et al. / Global Ecology and Conservation 6 (2016)
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Fig. 2. Land cover 2015 in the major peat domes of the study area. Administrative areas referred in the text are identified

as: PM = Peninsular Malaysia, Sar = Sarawak, BR = Brunei, SS = South Sumatra, WK = West Kalimantan and CK = CentEgI
Kalimantan.



Source: J. Miettinen et al. / Global Ecology and Conservation 6 (2016)
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Fig. 3. Development of land cover distribution 1990-2007-2015 (left—centre—right) in the major sub-regions of the study area. East Malaysia
contains Sarawak and Sabah. The ‘Open undeveloped’-class includes the original classes of ‘Seasonal water’, ‘Fern/low shrub’, ’Clearang


https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/land-cover
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/area
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/malaysia

