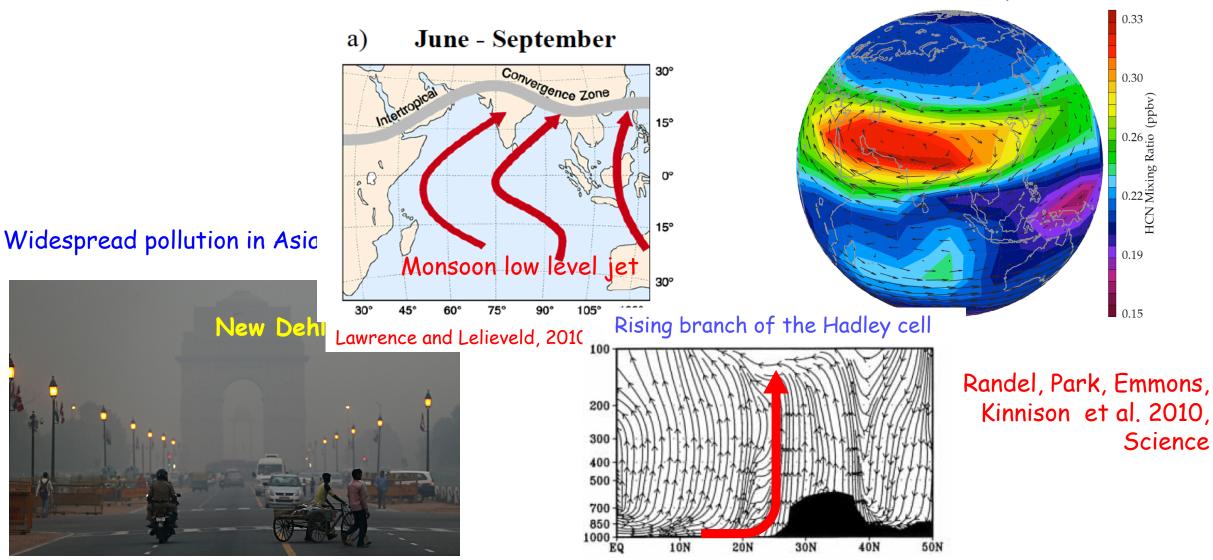


Asian Summer Monsoon Chemical and Climate Impact Project (ACCLIP)

Laura Pan


National Center for Atmospheric Research (NCAR), USA

Asian Emissions, Air Quality ↔ Monsoon ↔ Climate

Asian Summer Monsoon transport: a "perfect storm"

Zhang et al., 2002

HCN from Space

Asian Summer Monsoon Chemical and Climate Impact Project (ACCLIP)

Co-Principal Investigators:

Laura Pan (NCAR), Paul Newman (NASA)

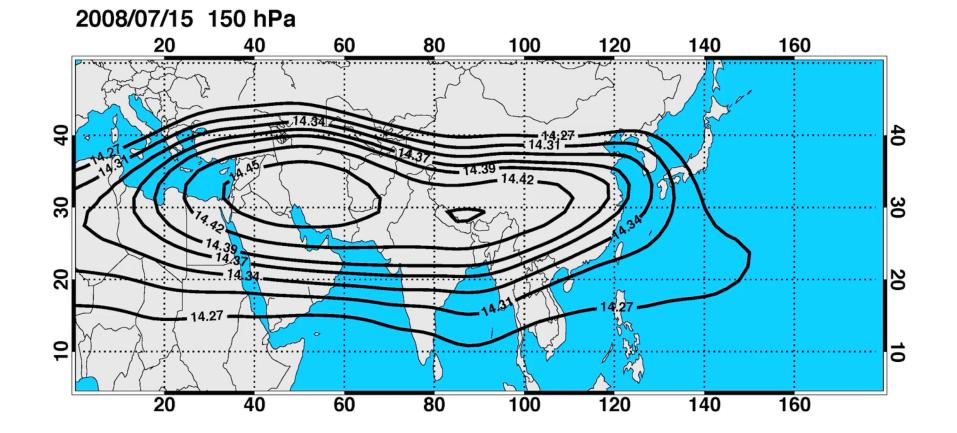
Co-Investigators:

Elliot Atlas (Univ. Miami), William Randel (NCAR), Brian Toon (CU), Troy Thornberry (NOAA)

Members of Scientific Steering Committee:

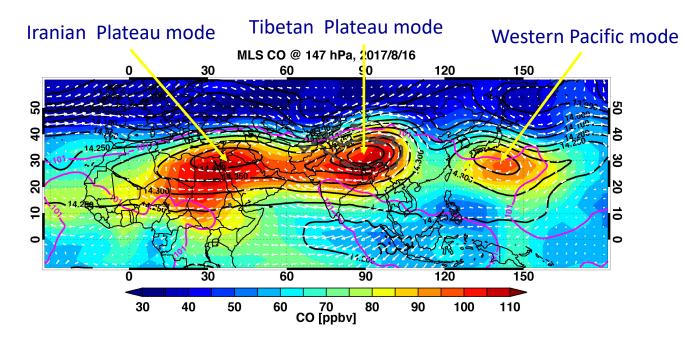
Ru-shan Gao (NOAA), Eric Jensen (NCAR), Karen Rosenlof (NOAA), Michelle Santee (JPL), Stephan Borrmann (MPI), Markus Rex (AWI), Masatomo Fujiwara (Japan)

Location: Western Pacific (Flight Operations from Japan) *Dates:* July 15 – August 31, 2020

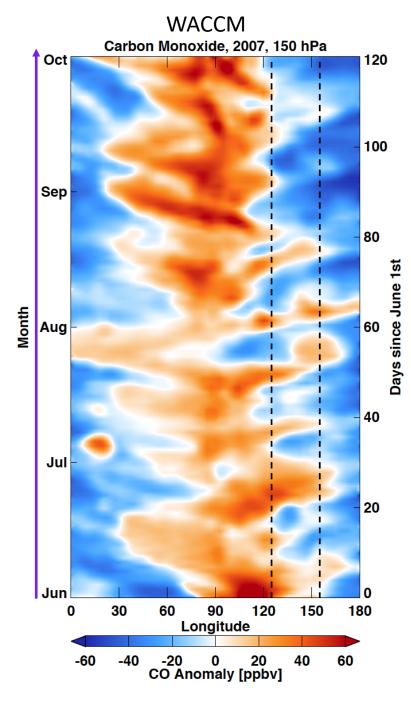

Project Goals, Objectives & Hypotheses

Primary Goal: To investigate the impacts of Asian gas and aerosol emissions on global chemistry and climate via the linkage of Asian Summer Monsoon (ASM) convection and associated large-scale dynamics

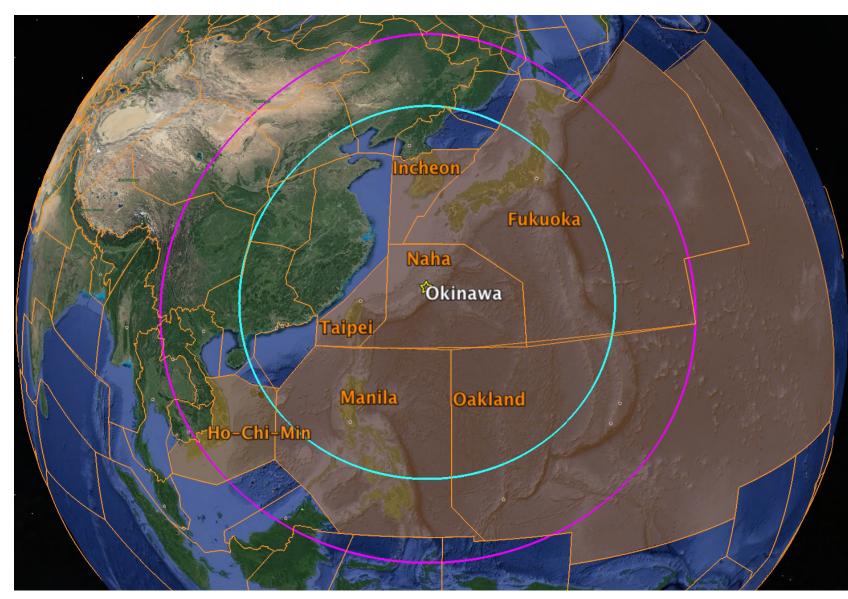
Scientific Objectives: Obtain a comprehensive suite of dynamical, chemical and microphysical measurements in the region of ASM anticyclone to address:


- 1) the transport pathways (vertical range, intensity, and time-scale) of the ASM uplifted air from inside of the anticyclone to the global upper troposphere and lower stratosphere (UTLS)
- 2) the chemical content of air processed in the ASM for UTLS ozone chemistry, and short-lived climate forcers
- 3) the information on **aerosol** size, mass and chemical composition for determining the radiative impact
- 4) the water vapor distribution associated with the monsoon dynamical structure

Sub-seasonal scale dynamical variability of the anticyclone & the western Pacific Mode


The Western Pacific Anticyclone and eastward "eddy shedding"

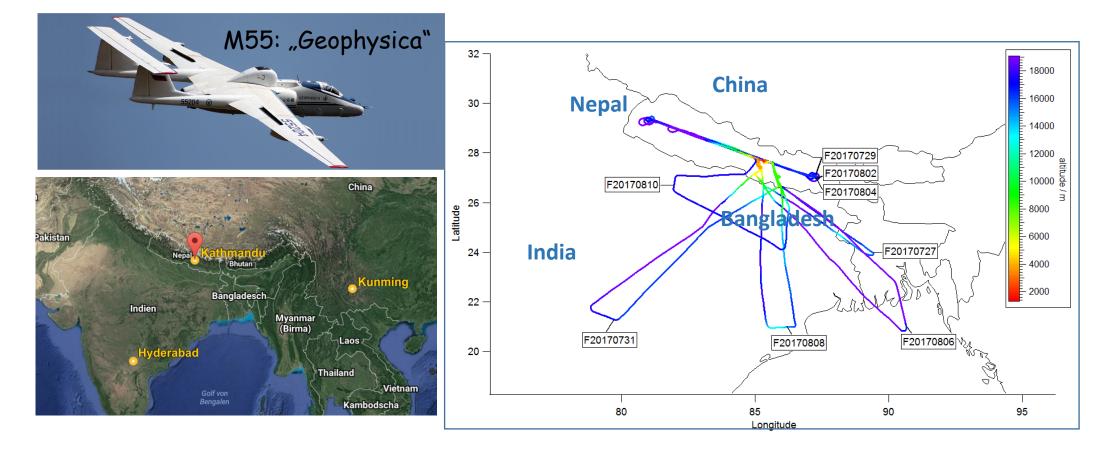
Sub-seasonal scale variability of the ASM



The path to impact global UTLS

Honomichl and Pan, to be submitted

Map of Flight Operations



- Base of the flight operation TBD, likely Okinawa
- Aim to operate in 7 FIRs
- Nominal flight ranges of the GV (purple) and WB-57(cyan)

The First Successful Field Campaign focus on the ACAM Core UTLS Science Issues

8 Science Flights, 2017, Exciting data on water vapor and aerosol composition

The GV payload and investigators

Trace gas measurements

$FASTO_3 + NO/NO_{x,y}$	Weinheimer, ACOM		
Aerodyne CO (CO, N ₂ O)	Campos/Flocke, ACOM		
Picarro (CO ₂ , CH ₄)	Campos, ACOM		
GT-CIMS (SO ₂ /HCI/HNO ₃ /HO ₂ NO ₂ / CH ₃ COOH /HCOOH)	Huey, GT		
TOGA	Apel, ACOM		
AWAS	Atlas, U Miami		
VCSEL (H ₂ O)	RAF		
Radiation			
HARP (actinic flux)	Hall, ACOM		

Aerosol

Size:

NMASS (3-60 nm)Williamson/Brock, NOAAUHSAS (cabin) (60 nm $- 1 \mu m$)UHSAS (wing)RAF

Composition:

SP2 (BC)Schwarz, NOAAERICA (particle types and
elemental composition)Borrmann, MPIC

Cloud

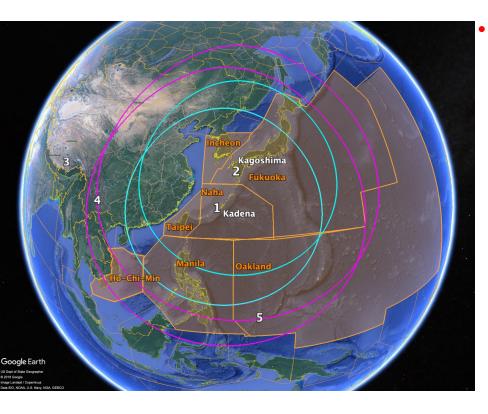
2DCRAFCDPRAF

MTP (Temperature profile) RAF

The WB-57 payload wish list

Trace gas measurements:

```
O_3, CO, H<sub>2</sub>O, SO<sub>2</sub>, NO/NOy IWC (NOAA ESRL)
CO, CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>O (NASA/AMS)
Whole Air Sampler (Miami)
H<sub>2</sub>O Isotopes (?)
```


Aerosols:

Size distribution (NMASS) Aerosol chemical composition (PALMS, NOAA) Backscatter (LIDAR TBD)

Possible Collaborations

ALI (aerosol)/ SHOW (H₂O) – Adam Bourassa, U Saskatchewan, Canada Cloud Probes – Martina Krämer, FZ Jülich

Ground-based measurements

Ru-Shan Gao (NOAA): Coordinator between Airborne and multiple sites1) Lars Kalnajs & Doug Gontz (CU): Funded by ACCLIP NSF proposal

 \overline{F} **Table 2.** Instruments and instrument characteristics for balloon profiles.

Measurements	Instrument	Specification	#	Reference
Aerosol size distribution	POPS	0.15-3 μm; 3 cm ³ s ⁻¹	12	(Gao et al., 2016)
	LOPC	0.25-10 μm; 250 cm ³ s ⁻¹	2	(Deshler et al., 2003)
Aerosol number concentration	CNC	>0.01 µm	6	(Campbell & Deshler, 2013)
Water vapor	CFH	>25000 ppmy to <0.8 ppmy	12	(Vömel et al., 2007)
Meteorological Parameters	iMet	Temperature: -95 to 50°C Pressure: 2 to 1070 hPA Humidity: accuracy 5% RH	12	

2) Masatomo Fujiwara (Japan PI): A large team collaboration

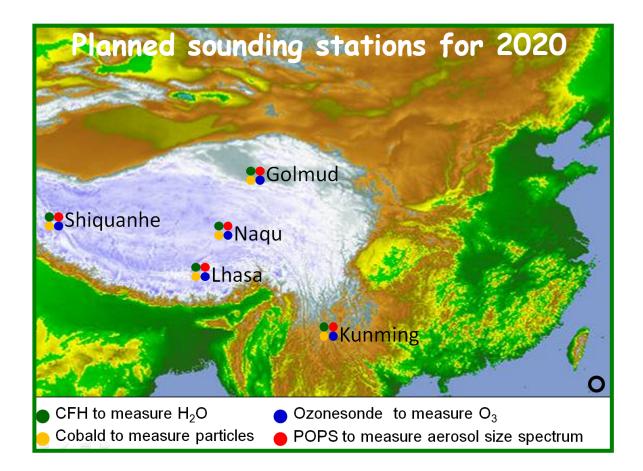
3,4) Jianchun Bian (IAP/CAS): Balloonborne measurements on the Tibetan plateau

5) Markus Rex (AWI/Germany): Ground based station Palau, TWP

International Collaborations I – Japanese team

Investigation of the transport processes dur to Asian Summer Monsoon by balloon, lidar, and aircraft observations

PI: Masatomo Fujiwara, Hokkaido University



International collaborations II – Chinese Proposal :

Troposphere-stratosphere exchange of atmospheric compositions over the Tibetan plateau and its climate effect

PI: Jianchun Bian, Institute of Atmospheric Physics, Chinese Academy of Sciences

- Ground Based sounding program with O₃, H₂O, aerosols and cirrus clouds
- Spatial and temporal evolution of the ATAL layer:
 - Five stations over the Tibetan Plateau
 - May-September, 2020, every 10-15 days

ACCLIP Collaboration Opportunities

In addition to collaborations in Japan, China, and Korea:

- Invite interests of collaboration in ACAM community
- Regional observational and modelling studies on the season's emission signature and deep convective activities are highly relevant
- Collaborations coordinated through working group to be discussed in breakout session tomorrow