The efficiency of transport into the stratosphere via the Asian and North American summer monsoon circulations

Xiaolu Yan¹, Paul Konopka¹, Felix Ploeger¹, Aurelien Podglajen¹, Jonathon S.Wright², Rolf Müller¹, and Martin Riese¹

¹Forschungszentrum Jülich (IEK-7: Stratosphere), Jülich, Germany ²Department of Earth System Science, Tsinghua University, Beijing, China

Introduction: Asian and North American summer Monsoon

- Monsoons are primarily driven by the strong continent-ocean thermal contrasts during summer
- The high elevation difference between the mountain and the ocean adds the temperature contrasts
- The onset of monsoons occur typically in late May to early June and last until September
- Uplift the water vapor and pollutants to the UTLS locally and globally

e.g. Bannister, Chen, Fu, Garny, Pan, Ploeger, Randel, Santee, Vernier, Vogel, Wright, Yu

Motivation

How does transport from the ASM and NASM affect stratospheric composition?
How large are contributions from the ASM and NASM regions to the stratosphere relative to contributions from the inner tropics?
From which levels within the ASM and NASM regions do the most effective transport pathways to the stratosphere originate?

Motivation

How does transport from the ASM and NASM affect stratospheric composition?
How large are contributions from the ASM and NASM regions to the stratosphere relative to contributions from the inner tropics?
From which levels within the ASM and NASM regions do the most effective transport pathways to the stratosphere originate?

The relative influences of the ASM and NASM on stratospheric composition
The transport pathways from monsoon regions to the stratosphere
Quantitative contributions and efficiencies of transport from different altitudes in these two monsoon regions to the stratosphere.

Data and methods

CLaMS Mod 2010-2013	del ERA-Interim (CLaMS-EI) MERRA-2 (CLaMS-M2)				
Source Region	ASM (30°E - 120°E, 15°N-45°N) NASM (160°W-60°W, 15°N-40°N) Tropics (15°S - 15°N)				
$\mathbf{M}_i = \begin{cases} \mathbf{I} \\ 0 \end{cases}$	inside the source region, July-August				
Destination	• Lower stratosphere in the Southern				

RegionLower stratosphere in the Southern
Hemisphere (LS-SH: 50°S - 70°S)• Lower stratosphere in the Northern
Hemisphere (LS-NH: 50°N-70°N)
• Tropical pipe (TrP: 15°S - 15°N)

Data and methods

• Tropical pipe (TrP: 15°S - 15°N)

340-350K, 350-360K, 360-370K, 370-380K

ClaMS H₂O, young air mass fraction MLS CO, MLS H₂O, and ACE-FTS HCN

Zonal-mean perspective on transport: CLaMS-EI

April-June • ASM ==> larger contribution NASM ==> smaller contribution

HCN (ACE-FTS)
 A strong origin from ASM
 A weak one from NASM

10.00

7.41

5.49

4.07

3.02

2.24

1.66

1.23

0.91

0.67

0.50

 350-360K ==> more in the stratosphere more in the SH
 370-380K ==> less in the stratosphere more in the NH

Zonal-mean perspective on transport: CLaMS-EI

Different pathways?

10.00

7.41

5.49

4.07

3.02

2.24

1.66

1.23

0.91

0.67

0.50

- April-June ASM ==> larger contribution NASM ==> smaller contribution
 - HCN (ACE-FTS)
 A strong origin from ASM
 A weak one from NASM
 - 350-360K ==> more in the stratosphere more in the SH
 370-380K ==> less in the stratosphere more in the NH

Zonal-mean perspective on transport: CLaMS-M2

Compared to CLaMS-EI:

10.00

7.41

5.49

4.07

3.02

2.24

1.66

1.23

0.91

0.67

0.50

- More ASM and NASM air (profile and column)
- Monsoon air peak at lower than the HCN peak related to the slow tropical upwelling
- Smaller hemispheric asymmetry

Vertical transport into the tropics (15°S-15°N)

- Weak barrier between tropics and subtropics
- 350-360K ==> High monsoon air in tropics 370-380K ==> Lower monsoon air in tropics large amount from 350-360K is transported through the tropics
- Good correlation between monsoon tracers and the 'wet' phase of MLS water vapor tape recorder signal

Horizontal transport into the lowermost stratosphere (400K)

- ASM and NASM: similar horizontal transport features, but the ASM contributes much more
- 350-360K ==> less confined in latitude more to the SH
 370-380K ==> more confined in latitude less to the SH
- Good correlation with the 'wet' phase of MLS water vapor

Correlation between monsoon tracers and water vapor in the Tropical Pipe

15°S-15°N 420-500K

- Positive correlation between monsoon tracers and water vapor
- Two pathways from 350-360K over monsoon regions to tropics Tropical pathway (magenta): drier Monsoon pathway (cyan): moister
- More young air mass fraction in the tropical pathway: faster Less young air mass fraction in the monsoon pathway: slower

24%, 33%, and 42% (from thin to thick dotted isolines) 51%, 60%, and 69% (from thin to thick solid isolines)

Time evolution of the monsoon tracer

- Peak 1: at the beginning of September (the rapid isentropic poleward transport)
- Peak 2: one month later (the additional vertical transport)
- 350-360K: more 370-380K: less (LS-NH, LS-SH, TrP)

Time evolution of the monsoon tracer

- Peak 1: at the beginning of September (the rapid isentropic poleward transport)
- Peak 2: one month later (the additional vertical transport)
- 350-360K: more 370-380K: less

- two weeks earlier than ASM (weaker dynamical confinement)
- smaller contribution

Time evolution of the monsoon tracer

- Peak 1: at the beginning of September (the rapid isentropic poleward transport)
- Peak 2: one month later (the additional vertical transport)
- 350-360K: more 370-380K: less

- two weeks earlier than ASM (weaker dynamical confinement)
- smaller contribution

LS-NH:ASM ≅ Tropics LS-SH: ASM < Tropics TrP: ASM ≅ Tropics

ASM, Tropics > 2×NASM (LS-SH and TrP)

source air fraction \times air mass of destination / air mass of source domain

ECMWF	340-350K	350-360K	360-370K	370-380K
ASM	2.276x10 ¹⁰	1.877x10 ¹⁰	1.179x10 ¹⁰	6.118x10 ⁹
NASM	1.916x10 ¹⁰	1.042x10 ¹⁰	5.649x10 ⁹	3.930x10 ⁹
Tropics	8.524x10 ¹⁰	5.484x10 ¹⁰	3.406x10 ¹⁰	2.207x10 ¹⁰
MERRA-2	340-350K	350-360K	360-370K	370-380K
ASM	2.284x10 ¹⁰	1.890x10 ¹⁰	1.124x10 ¹⁰	6.334x10 ⁹
NASM	2.006x10 ¹⁰	9.868x10 ⁹	5.927x10 ⁹	3.993x10 ⁹
Tropics	8.795x10 ¹⁰	5.420x10 ¹⁰	3.398x10 ¹⁰	2.254x10 ¹⁰

Mean air mass of initial source domain [kg]

source air fraction \times air mass of destination / air mass of source domain

LS-NH

Beginning: NASM > ASM End: ASM > NASM ASM, NASM > Tropics

> JÜLICH Forschungszentrum

source air fraction \times air mass of destination / air mass of source domain

Beginning: NASM > ASM End: ASM > NASM ASM, NASM > Tropics

Beginning: Tropics > ASM, NASM End: Tropics < ASM, NASM Especially ASM (350-360K)

source air fraction \times air mass of destination / air mass of source domain

Beginning: NASM > ASMEnd:ASM > NASMASM, NASM > Tropics

Beginning: Tropics > ASM, NASMEnd:Tropics < ASM, NASM</td>Especially ASM (350-360K)

ASM > NASM, Tropics Beginning: Tropics > NASM End: NASM > Tropics ASM (370-380K)

Summary:

• **350-360K:** more in the SH larger contribution lower efficiency longer transit time

[©] 370-380K

more in the NH smaller contribution high efficiency shorter transit time

Strong positive correlation with water vapor

Two pathways:

Monsoon pathway (slower, moister) Tropical pathway (faster, drier)

CLaMS-M2 relative to CLaMS-EI larger contributions / higher efficiency / longer transit time

