

PHILEAS CAMPAIGN GOALS

Probing High Latitude Export of air from the Asian Summer Monsoon

03.05.2023 I CH. ROLF, M. RIESE, P. HOOR, D. KUNKEL, B. VOGEL

PHILEAS CONSORTIUM

BERGISCHE UNIVERSITÄT WUPPERTAL

- Background
- Research questions
- Payload
- Campaign location and duration
- Phases / Example flight paths

CONFINEMENT OF POLLUTION BY THE ASM ANTICYCLONE

June 2023

MOISTENING OF THE SUBTROPICAL UT BY CONVECTIVE UPLIFT

MLS water vapour climatology at 360K (Plöger et al., 2013)

June 2023

SIMULATED LIFE CYCLE OF EASTWARD EDDY SHEDDING (CLAMS)

Second anticyclone: intact transport barrier between subtropics and midlatitudes (7.2PVU@380 K, Kunz et al., 2015) Long filament: signs of mixing into midlatitudes (PHILEAS objective) Mixing into the midlatitude LS: thin filaments over Northern Atlantic (e.g. Vogel et al., 2014; Müller et al. 2016)

Eastward migrating anticyclones break off several times during summer!

What are the **pathways**, **time scales and dynamical processes** of air mass transport from the ASM into the extratropical UTLS and LMS?

Q-D1: What is the relative importance of **different transport pathways** of air masses from the region of the Asian summer monsoon **into the extratropical UTLS**, their associated time scales and the related inter-annual **variability**?

Q-D2: Which **dynamical processes** control the **life cycle of eddies** shed from the Asian summer monsoon over the northern Pacific?

How do gas-phase and particulate constituents evolve in large-scale eddies which are shed from the monsoon anticyclone?

Q-A1: What is the state of processing of the **aerosol particles** (composition, size-distribution) as well as gasphase aerosol precursors (e.g. NH3, HNO3) and pollutants in the western part of the monsoon anticyclone?

Q-A2: How are these species affected after experiencing **long-range transport** through eastern outflow and during transport into the lowermost stratosphere?

IGI

How does eddy shedding from the monsoon **impact on extratropical LMS composition** in particular the water vapor and radiatively active species?

Q-C1: How does eddy shedding impact the depth of the ExTL and of the NH-LMS? Q-C2: Which microphysical processes determine the water vapor transport during eddy shedding into the LMS?

How does eddy shedding from the monsoon **impact on extratropical LMS composition** in particular the water vapor and radiatively active species?

How does eddy shedding from the monsoon **impact on extratropical LMS composition** in particular the water vapor and radiatively active species?

- Background
- Research questions
- Payload
- Campaign location and duration
- Phases / Example flight paths

Instrument	Target Parameter	Technique	Institution
GLORIA	Ammonium nitrate, NH_3 , O_3 , H_2O , HNO_3 , PAN, C_2H_6 , C_2H_2 , HCOOH,, temperature	Imaging IR Limb Sounder	KIT / FZ Jülich
AMICA	COS, CO, CO ₂	OA-ICOS	FZJ
AIMS	HCI, HNO ₃ , CIONO ₂ , SO ₂	Mass spectrometer	DLR-IPA
BCPD	cloud droplet size distributions.	Back-scatter with Polarization Detection	U Mainz
BAHAMAS	meteorological and avionic data	BAsic Measurement And Sensor System	DLR-FX
FAIRO	O ₃	UV/Chemilumincscence	KIT
FISH	(total)/gas-phase H ₂ O	Lyman-Alpha Hygrometer	FZ Jülich
GhOST-MS	SF ₆ , CFC-12, wide range of halogenated species (e.g. CH_2Br_2 , CHBr ₃ , halons, C_2Cl_4 , C_2HCl_3 , CHCl ₃ , CH_2Cl_2 , CH_3Cl)	GC-MS	U Frankfurt
HAGAR-V	CO2 SF6, CFCs, Halon-1211 NMHCs, short- and long-lived chlorocarbons, HFCs	NDIR GC-ECD GC-MS	U Wuppertal
AENEAS	NO, NO _y	Chemiluminescence	DLR-IPA
FASD-Rack	Ultra-High Aerosol Spectrometer (UHSAS) Aerosol size distribution	Particle spectrometer	TROPOS/ MPIC-Mainz
ERICA	Aerosol composition and size distribution	Mass spectrometry	U Mainz/ MPIC-Mainz
UMAQS	CO, N ₂ O, CH ₄ , C ₂ H ₆	QCL Absorption Spectrometer	U Mainz

Payload

- Background
- Research questions
- Payload
- Campaign location and duration
- Phases / Example flight paths

CAMPAIGN PHASES AND LOCATIONS

adapted from Vogel et al., 2016

I : August 2023 (2.5 weeks), Europe (OP), ExLS background, undiluted ASM air (westerly outflow)
II : August /September 2023 (5 weeks), Alaska (Anchorage), mixing into ExLS (up to 390K)
III: October 2023 (1 week), Europe (OP), ExLS background changes

- Background
- Research questions
- Payload
- Campaign location and duration
- Phases / Example flight paths

PHASE 1: CAMPAIGN PHASES AND LOCATIONS

I : August 2023, Europe, ExLS background, undiluted ASM air, coordinate flight with LearJet (TPChange)

IGU

PHASE 1: EXAMPLE FLIGHT PATHS

PHASE 2: CAMPAIGN PHASES AND LOCATIONS

II : August /September 2023, Alaska, mixing into ExLS (up to 390K)

PHASE 2: EXAMPLE FLIGHT PATHS

PHASE 3: CAMPAIGN PHASES AND LOCATIONS

III: October 2023, Europe, ExLS background changes

Mitglied der Helmholtz-Gemeinschaft

THANKS FOR YOUR ATTENTION!

