

Science and Operations Highlights of the ACCLIP Campaign 2022

Laura Pan, Paul Newman, Elliot Atlas, Troy Thornberry, Bill Randel, Brian Toon, & **ACCLIP Science Team**

Laura Pan, June 2023

ACCLIP Team at Osan AFB July 27 - September 2, 2022

Asian Summer Monsoon Chemical and Climate Impacts Project (ACCLIP)

Principal Investigators: Laura Pan (NCAR), Paul Newman (NASA) Lead Co-Investigators: Elliot Atlas (Univ. Miami), William Randel (NCAR), Troy Thornberry (NOAA), Brian Toon (CU)

Participated by:

US: NSF/CU; Korea: Multiple universities & NIER Japan: Universities and NIES; China: CAS/IAP Taiwan & UK: Academia Sinica & University of East Anglia Germany: AWI

ACCLIP Airborne Measurements

Measurement	WB	GV
State Parameters		
Position, Pressure, Temperature, Winds,		
Humidity	Aircraft, MMS	Aircraft, VCSEL
Temperature profile (above/below aircraft)		MTP
Trace Gases		
CO	COMA, COLD2, ACOS	Aerodyne, Picarro
CO ₂	ACOS	Picarro
CH ₄		Picarro
N ₂ O	COMA	Aerodyne
O ₃	UAS O3	FAST_O3
NO, NO ₂	NO-LIF	NO_NOy
SO ₂	SO2-LIF	GTCIMS
HCI, HO ₂ NO ₂ , HNO ₃ HCOOH, CH ₃ COOH		GTCIMS
CH ₂ O	ISAF	TOGA
COS	ACOS	AWAS
H ₂ O	DLH, CHiWIS, ACOS	VCSEL
H ₂ O Isotopes	ChiWIS	
VOCs (many)	WAS	TOGA, AWAS
Aerosols		
	NMASS, CAPS, POPS,	
Particle size/mass distributions	UHSAS	NMASS, UHSAS
Chemical composition/size	PALMS	ERICA
cloud particle size/imaging	2D-S	2DS
cloud droplet size	FCDP	CDP
Cloud/aerosol distributions above/below aircraft	ROSCOE	
Radiation		
Radiative flux/Photolysis frequencies	BBR	HARP

Laura Pan, June 2023

A New Chapter of Monsoon Research: Atmospheric Composition and the Asian Monsoon

Satellite data alone cannot address the questions of ASM impacts on Atm. Composition

Airborne and balloon borne in situ measurements are necessary for the process understanding

Remember the pioneer effort of SEAC⁴RS 10 years ago (2010-2012)

Survivor of the COVID-19 pandemic (2020-2022)

WB-57 & GV (HIAPER), 2022

HALO 2015

Geophysica, 2017

HALO, 2023

Laura Pan, June 2023

A SPARC/IGAC jointly sponsored activity

ACCLIP operations highlight : Sampling the eastward shifted Tibetan anticyclone

ACCLIP operations highlight : A Total of 29 Research Flights

ACCLIP science highlight : the special role of the East Asian Summer Monsoon (EASM) in ASM transport

<u>Key message:</u>

Campaign result identified the importance of the East Asian Summer Monsoon (EASM) convective transport for UTLS composition and ozone chemistry

More Information on ACCLIP

• ACCLIP Science Home Page: https://www2.acom.ucar.edu/acclip

• ACCLIP operation NASA ESPO: https://espo.nasa.gov/acclip

• Data are Available :

NCAR Archive: https://data.eol.ucar.edu/master_lists/generated/acclip/

NASA Archive: https://www-air.larc.nasa.gov/cgi-bin/ArcView/acclip

Thank you