

Contributions of Various Sources to the Higher-Concentration Center of CO within the ASM Anticyclone

Qian Li

Co-authers: Yuepeng Yang, Haoyue Wang, Zhixuan Bai, Dan Li, Weiguo Wang, & Jianchun Bian

LAGEO, Institute of Atmospheric Physics Chinese Academy of Sciences, Beijing, China

2023-6-8, Dhaka, Bangladesh

Background
Data and model
Analysis
Summary

Background
Data and model
Analysis
Summary

Background

UTLS highly concentrated CO and its surface emissions

Surface emissions

100hPa

Background

UTLS highly concentrated CO and deep convections

OLR (Outgoing Longwave Radiation)

100hPa

Background
Data and model
Analysis
Summary

Data and model

• Data

> CO: Aura MLS L3 V4.2

> OLR: NCAR/NCEP

> Reanalysis met field: MERRA-2

Model

CTM GEOS-Chem: surface~0.01hPa; 2x2.5 grid; MERRA-2 driven

Surface emissions: APEI V2016; NEI V2015-03; DICE-Africa; MIX V1.1; CEDS; GFED; MEGAN

> Tagged CO experiments

> Background
> Data and model
> Analysis
> Summary

Analysis: model evaluation

GEOS-Chem

90°S

180°

90°W

52 56 60 64 68 72 76 80 84 88

00

90°S

180°

90°W

52 56 60 64 68 72 76 80 84

90°E

88 92

96 100

180°

180°

90°E

92 96 100

MLS

Analysis: emission regions to ASM

(b) 2016

Surface emissions of CO

Rate of CO emission(kg/m2/s*10^-9)

Analysis: emission regions to ASM

South Asia; East Asia; Southeast Asian

Analysis: emission regions to ASM

Analysis: emissions, CH4, VOCs

- Sources and Sinks

	Troposphere	Stratosphere
Sources	Biomass burning; Fossil fuel burning; Domestic biofuel burning; Yield of chemical reaction of CH4; Yield of chemical reactions of VOCs	Yield of chemical reaction of CH4
Sinks	Reaction of CO+OH	Reaction of CO+OH
Life time	a few days	Weeks - months

Analysis: emissions, CH4, VOCs

Analysis: regions & chemicals

Differences in the CO concentration in two longitude ranges. Units: ppbv

Latitude (°N)	East Asia	South Asia	Southeast Asia	CO Emissions	CH ₄	NMVOCs	Control Experiment	MLS
-10-0	0.87	0.92	0.52	2.90	3.05	1.33	6.20	2.24
0–10	1.77	2.10	1.08	4.71	3.97	1.50	8.49	3.24
10-20	<u>2.51</u>	4.68	<u>1.27</u>	8.73	6.21	2.81	14.41	14.67
20-30	1.84	<u>8.18</u>	0.86	<u>11.86</u>	<u>7.19</u>	<u>3.90</u>	<u>17.95</u>	<u>21.88</u>
30-40	0.84	4.99	0.45	6.90	4.56	2.36	10.08	13.74
40-50	0.07	0.96	0.08	1.25	0.99	0.44	1.82	3.32
50–60	0.01	0.16	0.03	0.24	0.25	0.13	0.60	0.47

> Background
> Data and model
> Analysis
> Summary

Summary

Model well simulated CO in UTLS

Model results shows:

- ✓ Regarding effects of highly concentrated CO in ASM at 100 hPa, 43.18% originated from CH4, 20.81% from VOC, 63.33% from surface CO emissions, effect of sinks reached 27.32%
- ✓ Regarding surface CO emissions, East Asia contributed 13.56%, South Asia contributed 39.27%, and Southeast Asia contributed 7.15%.

Thanks for your listening! gian.li@mail.iap.ac.cn

Remote Sens. 2022, 14, 3322. https://doi.org/10.3390/rs14143322