The Balloon measurement campaigns of The Asian Tropopause Aerosol Layer (BATAL)

<u>J.-P. Vernier</u>^{1,2}, A. Pandit^{1,2}, M. V. Ratnam³, H. Liu^{1,2}, D. Fairlie^{2,*}, M. Natarajan¹, B. Zhang¹, S. Kumar⁵, N. Rastogi⁶, H. Gadhavi⁶, A. Jayaraman^{*}, T. Deshler⁷, K. Bedka², A. Raj³, S. Kumar⁶, A. Singh⁸, G. Berthet⁹, G. Stenchikov¹⁰, F. Wienhold^{11,} C. Roden¹²

1. National Institute of Aerospace, USA

2. NASA Langley Research Center, USA.

3. National Atmospheric Research Laboratory, Gadanki, India

- 4. University Space Research Associates, Columbia, USA
 - 5. National balloon facility, TIFR, Hyderabad, India
 - 6. Physical Research Laboratory, India
 - 7. University of Wyoming, USA
 - 8. Banaras Hindu University, India
 - 9. LPC2E, CNRS, Orleans, France

King Abdullah University of Science and Tech., Saudi Arabia
 Swiss Federal Institute of Tech., Zurich, Switzerland
 SPECs, Boulder, USA

* In the memory of Duncan who left us too early

BATAL is built on International Partnerships

The Asian Tropopause Aerosol Layer (ATAL)

Transport pathways and the ATAL:

- 1. Deep convection from ASM connects boundary layer pollution to UTLS (Park et al., 2009, Randel et al., 2010)
- 2. The monsoonal outflow transport through tropical easterlies southern branch of the Asian anticyclone
- 3. Air in the tropical upper troposphere/southern edge of the Asian anticyclone can be uplifted into the lower stratosphere via diabatic ascent (Garny and Randel 2016)

Evidence for the transport of the ATAL into the stratosphere

ATAL's extends between 360 and 420 K (14-18 km) during Summer Asian Monsoon
 Maximum SR in August

- Export above 420 K is evident but limited after September

Global Influence of the ATAL on NH Stratospheric AOD

- Footprint of the ATAL observed across the Northern Hemisphere

BATAL deployments 2014-2020 93 flights

Payloads to cover all aerosol and ice sizes

CALIPSO Validation with COBALD

- COBALD backscatter sonde (ETH)
- In situ backscatter at two wavelengths (455nm & 940nm)
- 72 flights with COBALD [2014-2018]

Aerosol Scattering Ratio

Defining upper boundary of ATAL

- BATAL observations suggest that the layer of maximum stability (LmaxS) can separates the ATAL from the well-known stratospheric 'Junge layer'.
- The top of the enhanced water vapor layer in the LS also coincides with the LmaxS.

Nitrate contributions from India and China

1.10

Aerosol Scattering Ratio

1.00

1.05

1.15

1.20

- GEOS-Chem (CTM) Aug 2013
- Aerosols: SO₄, NO₃, NH₄, BC, OC,
 SS, Dust
- Treatment of SO₂ in Aqua phase improved using Henry's law
- Shape and Magnitude of ATAL agree well with CALIPSO

<u>Source attribution</u>
 <u>study</u>:

Nitrate is a dominant component of aerosol composition on the southern flank of the ASM anticyclone. Lightning sources of NO_x are found to make a significant (10-15%) contribution to nitrate in the ATAL for the case studied

Nitrate domination within the ATAL

- Extended balloon flights for aerosol sampling near the tropopause reveal the presence of nitrate/nitrate aerosols.
- GEO-Chem simulation shows that a fraction (<20%) of nitrate is produced through Lightning-induced NOx.

ATAL & Cirrus cloud formation

- Southern Part of the ASM anticyclone coincide with a cold temp anomaly
- Favorable conditions to study the ATAL and cirrus cloud interaction

Occurrence Frequency, Number Concentration & Shape of Ice crystals

High occurrence of cirrus clouds near the cold-point tropopause (16-18 km) at extremely cold temperatures with quasi-spheroid ice-crystals smaller than 50 μm diameter.

Next Steps for the BATAL project

- NASA-ISRO IA expired in 2022, Agreement Extension 2023-2027, for next deployment during the summer 2023.
- Technical intercomparison of OPC (NOAA POPS, University of Wyoming OPC, LaRC OPC, LPC2E LOAC)
- Development of payloads and flight systems for measurements across the Bay of Bengal to study aerosol-cloud interaction.
- Measurements near Deep convective system around polluted areas to better understand the role of the monsoon in transporting pollution in the stratosphere.
- Engage with more groups in Asia to coordinate balloon flights

Thank you !