Atmospheric Composition and the Asian Monsoon (ACAM) The 5th ACAM workshop, 8-10 June 2023, Dhaka, Bangladesh ⁴ Hosted by Professor Abdus Salam, Dhaka University

Dmitry A. Belikov¹, Prabir K. Patra^{2,1}, Naoko Saitoh¹

¹Center for Environmental Remote Sensing (CEReS), Chiba University, Chiba, Japan ²Research Institute for Global Change (RIGC), JAMSTEC, Yokohama, Japan

Email: d.belikov@chiba-u.jp

- For a time horizon of 100 years, CH₄ has a Global Warming Potential 28 times larger than CO₂.
- Methane is responsible for 23% of the global warming produced by $CO_{2,}$ CH_4 , and N_2O .
- ➤ The concentration of CH₄ in the atmosphere is 150% above pre-industrial levels (cf. 1750).
- > Large emission uncertainty: 550-594 Tg-CH₄yr⁻¹
- > The atmospheric lifetime of CH_4 is 9 ± 2 years:
 - A good target for climate change mitigation
 - > Very good tracer for tracing middle-term (1-2 months) transport

Introduction

The a priori CH₄ fluxes. The MIROC4.0-ACTM simulation setup ⁴

MIROC4-ACTM

CH₄ simulated by MIROC4-ACTM [Patra et al., 2018]:

- 67 sigma-pressure vertical layers (1000-0.01 hPa)
- horizontal grid T42 (lat/lon ~2.8 × 2.8°)
- U, V, T are nudged to JRA-55 reanalysis fields

Chemical reactions

The chemical loss due to **OH** reactions is following [Patra et al., Nature, 2014].

Set of a priori fluxes

- 1. Inv1: the a priori fluxes provided by the GCP protocol and associated to the oxidant fields from TRANSCOM
 - a) Cyclic: geological, ocean, termites, wetlands
 - b) IAV: biomass burning, biofuels, coal, livestock, oil + gas, rice, soils, waste
- 2. InCao: same as Inv1, but wetlands and rice from VISIT Cao scheme
- **3. InWH:** same as Inv1, but wetlands and rice from VISIT **WH** scheme (Ito, 2019)

A large difference between the a priori flux sets, which increase during ASMA.

GOSAT shortwave infrared (SWIR) bands

Mean number of observations per year

CH₄ from GOSAT-SWIR and ACTM

- The CH₄ seasonal cycle is controlled by the surface emissions and the influence of the global monsoon circulations.
- The major contrast between monsoon, and pre- and postmonsoon profiles of $\rm CH_4$
- A strong difference between seasons in the middle and upper troposphere is caused by convective transport.

Chandra et al., ACP, 2017

GOSAT thermal infrared (TIR) and shortwave infrared (SWIR) bands

by Kei Shiomi, JAXA

GOSAT-TIR benefits

- 1. Observations could be performed at night and during heavy cloud conditions
- Captures signal at 22 layers from the top of the atmospheric boundary layer (ABL) up to UT/LS (800-150 hPa)
- **3.** The sensitivity maximum at the levels of 200–400 hPa

Mean number of observations per year

GOSAT-TIR

GOSAT-TIR and ACTM data processing

- 1. Collocation using the nearest model grid cell in space, and the nearest hour in time for **2009-2014**
- 2. Vertical profiles were interpolated from the ACTM grid (67 levels) on the GOSAT grid (22 levels)
- 3. To draw lat-lon plots datasets were remapped on the grid 3.0x3.0 deg
- 4. Applied TIR CH_4 averaging kernel functions to the corresponding ACTM CH_4 profile

/

$$\mathbf{X}_{\text{ACTM}_{\text{Cao,WH}}} = \mathbf{X}_{a \ priori} + \mathbf{A} \left(\mathbf{X}_{\text{ACTM}_{\text{Cao,WH}}} - \mathbf{X}_{a \ priori} \right),$$

Zou, AMT, 2016

CH₄ from GOSAT-TIR and ACTM

- The weekly air sampling at Nainital (NTL; 29.36° N, 79.46° E; 1940 m a.s.l.) in northern India from 2006 and Comilla (CLA; 23.43° N, 91.18° E; 30 m a.s.l.) in Bangladesh from 2012.
- Estimate influence of these site observations on the CH₄ flux uncertainty

Observations in South Asia

The time series of 3-monthly averaged concentrations

72 h back-trajectory by METEX

Is Bangladesh, the gateway of the Indo-Gangetic air pollution?

The seasonal variations of the tracer concentrations for 2012-2021

Setup:

54 land regions and 60 observation sites for 1997-2020

by Patra et al., JMSJ, 2016

12

Flux uncertainty reduction (FUR) is a standard diagnostic of Bayesian estimation to identify which regions are well constrained by the data. FUR in percentages is defined by

$$FUR = \left(1 - \frac{\sigma_{predicted}}{\sigma_{prior}}\right) \cdot 100$$

where $\sigma_{predicted}$ and σ_{prior} represent the predicted and prior flux uncertainties, respectively.

Inversion results with NTL/CLA observations

A priori Cao (a) and viWH (e) fluxes, and difference (a posteriori – a priori) in the surface CH_4 fluxes (g- $CH_4/m2/month$) derived for the vCao, viWH flux combinations.

Inversion results with NTL/CLA observations

Flux cases	Total emission Tg-CH ₄ yr ⁻¹		
	Cao	WH	Cao&WH averaged
A prior	59.4 ± 5.2	72.6 ± 7.0	65.9 ± 9.3
A posteriori without NTL/CLA	59.0 ± 5.2	73.4 ± 6.9	66.2 ± 10.2
A posteriori with NTL/CLA	64.2 ± 5.1	72.6 ± 7.8	68.5 ± 5.9

Pathways of CH₄ Interhemispheric transport (IHT)

 CH_4 averaged over the levels of tropopause + 200 hPa, observed by GOSAT-TIR and modeled for 2010. The zonal mean value of CH_4 was subtracted. Wind vector fields are simulated by MIROC4.

Pathways of CH₄ Interhemispheric transport (IHT)

 CH_4 averaged over the levels of tropopause + 200 hPa, observed by GOSAT-TIR and modeled by ACTM for JFM and JAS for 2010–2013. The zonal mean value of CH4 was subtracted. Wind vector fields are simulated by MIROC4.

Pathways of CH₄ Interhemispheric transport (IHT)

Summary

- 1. The major factors controlling the seasonal variation of CH_4 at different atmospheric levels over the South Asia region:
 - a) Change in local emission strength.
 - b) Variability in atmospheric circulation and vertical convection caused by ASMA.
- 2. The South Asia region emission and ASMA influence transport of CH₄:
 - a) In regional scale (subregional transport).
 - b) In global scale (interhemispheric transport).
- 3. The dual role of ASMA revealed:
 - a) Blocks IHT in the tropical zone of the Indian Ocean (TIO) and Southeast Asia (SEA).
 - b) Accelerate IHT transport over East Africa (ETA).
- 4. GOSAT-TIR observations provide data coverage and density suitable to study CH_4 from the top of ABL up to upper troposphere.
- 5. Use of 2 additional sites (CLA and NTL) bring more data to constrain the regional fluxes in region.
- 6. No increase in CH_4 fluxes associated with large CH_4 concentrations in CLA.

- This research was supported by the Environment Research and Technology Development Fund (JPMEERF21S20807) of the Environmental Restoration and Conservation Agency of Japan.
- Observations in NTL/CLA are performed by the Yukio Terao group from NIES (Japan) in collaboration with Manish Naja (Aryabhatta Research Institute of Observational Sciences), Md. Kawser Ahmed (Department of Oceanography, Faculty of Earth & Environmental Sciences, University of Dhaka).
- We thank NOAA, AGAGE, CSIRO, and cooperative institutions for providing methane observations. AGAGE is supported principally by NASA (USA) grants to MIT and SIO, and by BEIS (UK) and NOAA (USA) grants to Bristol University; CSIRO and BoM (Australia): FOEN grants to Empa (Switzerland); NILU (Norway); SNU (Korea); CMA (China); NIES (Japan); and Urbino University (Italy).
- This presentation was supported by the ACAM5 organization committee.