
The Chemical Kinetics
Time Step

a detailed lecture

Andrew Conley
ACOM Division

Simulation Time Step

• Deep convection
• Shallow convection
• Stratiform tend (sedimentation, detrain, cloud fraction, microphysics)
• Aerosol wet chemistry
• Radiation
• Couple (land, ice, ocean)
• Transport
• Sink/source for chemicals

• Deposition, kinetics, emissions
• Vertical diffusion
• Aerosol dry deposition
• Gravity wave drag

Trust the solver?

• Robust – It can’t break, ever!

• 1 degree horizontal resolution, 100 yrs, dt = 15mins , 30 levels

• => 3,079,296,000,000 solves of an ODE -- order(nspecies)

• When it fails, it does something reasonable that can be handled.

• Stable

• Consistent, accurate enough for application

• Sufficient to capture the relevant behavior

• Scientists expect to trust results

Requirements
Consistency

• Resolution->0
• Number of reactions and species
• dt->0
• Conservation laws (mass, stoichiometry)
• Time splitting
• Positive Definite

Stability
Engineering Constraints

• Exothermic reactions – Flame fronts
• Computational time (number of matrix solves and f evals)

• Computation of f
• jacobian solves, sparse solves.

• Complexity of method (implication for adjoint)
• Robust

• When things fail
• Subdividing the time step

• Context
• Software/hardware (threading / tasks / compilers)
• Fundamental kinetics vs simulation of weather/climate

• Result is good enough – testing?

Simple Example (Terminator Chemistry Test)

Rates
R(1) = ! ∗ [$%&]
R(2) = 1 ∗ [$%]&

Differential Equation
)[*+,]
)- = -! [$%&] + 1 [$%]&

)[*+]
)- = 2j [$%&] - 2 [$%]&

$%& → $% + $% ! Photolytic Decomposition

$% + $% → $%& 1 Recombination
Lauritzen et. al. 2015 Assume

rate constants don’t vary during time step
f(solar, T, P, Surface Area Density, …)

Simple Example

Rates
R(1) = ! ∗ [$%&]
R(2) = 1 ∗ [$%]&

Differential Equation
)[*+,]
)- = -! [$%&] + 1 [$%]&

)[*+]
)- = 2j [$%&] - 2 [$%]&

$%& → $% + $% ! Photolytic Decomposition
$% + $% → $%& 1 Recombination

Lauritzen et. al. 2015

Non-linear

y’ = y2 y(0) = y0

Solution: y = 1 / (y0 – t)

Blows up at t = y0

Implications?

• Mass increases without bound

• Believe that?

• But mass is bounded (or our list of reactions is wrong.)

• “Don’t worry, be happy”

y’ = f(y) Theory

• !" # exists -> unique solution exists
• !⃗(#⃗, ') -> More complicated conditions for existence, uniqueness
• Hope?
• Seems to work, except when we implement bad collections of reactions
• Scientists trust the underlying numerical method
• Learn from linear systems

![#$%]
!' = -([)*+] + 1 [)*]+

![#$]
!' = 2([)*+] - 2 [)*]+

Linear Form
!
!'

.#$%.#$ = −(2[)*]
2(− 4[)*]

.#$%.#$
!2
!' =

!3
!2 4 = 54

Linearized (forward sensitivity)
)*+ →)* +)* (Photolytic Decomposition
)* +)* →)*+ 1 Recombination

Lauritzen et. al. 2015
84
89 = :(4)

![#$%]
!' = -([)*+] + 1 [)*]+

![#$]
!' = 2([)*+] - 2 [)*]+

Linear Form
!
!'

.#$%.#$ = −(2[)*]
2(− 4[)*]

.#$%.#$

Linearized (forward sensitivity)
)*+ →)* +)* (Photolytic Decomposition
)* +)* →)*+ 1 Recombination

Lauritzen et. al. 2015

Forcing

45
46 =

47
45 5 = 85

45
46 = 7(5)

Jacobian

Stiffness

• !"!# = % '⃗ % ' = !(⃗
!"

• Jordan Normal Form

•)*+ %) = ,
• Diagonal of eigenvalues (-+, -/, ..)
• Rank of A is ~(number of species – # conservation laws)

Stiffness: |-123| 45
> 1 Be Careful. This is a stiff ODE.

< 1 Ok

<
+
6 Smaller is better, but…

Stiffness

• !"
!# = % '⃗ % ' = !(⃗

!"
Stiffness: |*+,-| ./

> 1 Be Careful. This is a stiff ODE.

< 1 Ok

<
0
1 Smaller is better

Eigenvalues vary with mechanism and local environment

Time step, ./, imposed by external model

A-priori estimates are rare

Computation can be expensive (Krylov methods)

If it is atmospheric chemistry

• it is probably stiff (or make ./ larger)

• or uninteresting from a solver viewpoint

!
!"

#$
#% =

−5 1
1 − $

*

#$
#% + = {0,−5.2}

Initial Condition:
#$
#% = 1

5
Solution:

#$
#% (3) = 1

5 56∗"

Initial Condition:
#$
#% = 0.5

5.1
Solution:

#$
#% (3) = 1

5 + 0.1 −5
1 58(*.%)"

Forward Euler (explicit)

! "# − !(0)
"# =)(! 0)

!*= +! −> ! "# − !(0)
"# = + ! 0

! "# = 1 + + "# ! 0

! / "# = 1 + + "# 0 ! 0

Forward Euler !" = −5 !

Forward Euler
! "# − !(0)

"# =) 0 = * ! 0

[*"# = ,]

! .
/ , = 1 + , . ! 0 = 2 , .

Need |2 , | = 1 + , < 1

Forward Euler !"= $! = % ! ! = !&' ()

! *+ − !(0)
*+ = $ 0 = % ! 0

! *+ = 1 + % *+ ! 0

! 2 *+ = 1 + % *+ 3 ! 0
[%*+ = 5]

Numerical: ! 3
(5 = 1 + 5 3 ! 0

Exact: ! 3
(5 = '3 7 ! 0

Backward Euler (implicit)

! "# − !(0)
"# =) "# = * ! "#

! +
* , = 1 − , ./ ! 0

Exact: ! /
0 , = 1/ 2 ! 0

3 , = 1 − , .4

Forward Euler
Not A-stable

Backward Euler
A-stable

! " ! "

" = $ %& " = $ %&

Forward Euler !" = −5 !

Concerned: (> 0?
• Mass conservation
• But away from equilibrium,

could (> 0?
• Also, not everything is linear

near equilibrium

+ = (-.

/ +

Popular Methods

• Trapezoidal (Implicit)

• !"#$ %!"&' =)
* [, -./) + , -.] 2 3 =)/$45

)%$45

• Adams-Bashforth (multistep, explicit)
• !"#$ %!"

&' = 6* , -. −)
* ,(-.%))

• Runge-Kutta (commonly RK4, explicit)
• Multistep, but -:';<= depends on , -:';<=%)
• Reduces to Simpson’s rule if , -, ? not a function of -

Linear Stability

• A-stable
• If ! " < 1 includes all negative real numbers

• L-stable
• If, additionally ! " → 0 '(" → −∞

• B-stability
• Stability for Runge-Kutta methods

• No explicit method is linearly A-stable

Choose

• Trapezoidal (Implicit)

• !"#$ %!"&' =)
* [, -./) + , -.] 2 3 =)/$45

)%$45

• Adams-Bashforth (multistep, explicit)
• !"#$ %!"

&' = 6* , -. −)
* ,(-.%))

• Runge-Kutta (commonly RK4, explicit)
• Multistep, but -:';<= depends on , -:';<=%)
• Reduces to Simpson’s rule if , -, ? not a function of -

Requirements
Consistency

• Resolution->0

• Number of reactions and species

• Order of Approximation

• Conservation laws (mass, stoichiometry)

Stability ! " < 1 ! " → ∞ → 0
Engineering Constraints

• dt > 0

• Positive Definite

• Time splitting

• Exothermic reactions – Flame fronts

• Computational time (number of matrix solves and f evals)
• Computation of f

• jacobian solves, sparse solves.

• Complexity of method (implication for adjoint)

• Robust

• When things fail

• Subdividing the time step

• Context

• Software/hardware (threading / tasks / compilers)

• Fundamental kinetics vs simulation of weather/climate

• Result is good enough – testing?

Accuracy (consistency)

• Adams-Bashforth
• !"#$ %!"&' =

(
) * +, − .

) *(+,%.)
• Taylor expand and get errors relative to +1= * +
• Error < 4(&')5

.) max(*111)
• Local order 3, global order 2
• Consistent, not A-stable

• Order has to have local order larger than 1 to be consistent
• Error terms can drive subdivision of time step (Rosenbrock method)

• Convergence = Stabile + Consistent So what? (dt > 0)

Conservation

• Stoichiometry implies atoms are conserved.

• 2 "#$ + "# = Constant
• As many 0 eigenvalues as atoms – perhaps.
• Numerical conservation?

"#$ → "# + "# (Photolytic Decomposition
"# + "# → "#$ 1 Recombination

Other consistency-like considerations

• Do we have all the relevant reactions to support study?
• “chemical resolution/consistency”

• Horizontal resolution:
• Nonlinear
• <v1> <v2> ?=? <v1v2>

MPAS

Biogenic Emissions, chemistry, CONUS refinement

Rebecca Schwantes, Forrest Lacey, In Development

CESM-SE

Requirements
Consistency

• Resolution->0
• Number of reactions and species

• Order of Approximation
• Conservation laws (mass, stoichiometry)

Stability ! " < 1
Engineering Constraints

• Positive Definite
• Time splitting
• Exothermic reactions – Flame fronts

• Computational time (number of matrix solves and f evals)
• Computation of f

• jacobian solves, sparse solves.

• Complexity of method (implication for adjoint)
• Robust

• When things fail

• Subdividing the time step

• Context
• Software/hardware (threading / tasks / compilers)

• Fundamental kinetics vs simulation of weather/climate

• Result is good enough – testing?

Trust the solver?

• Global simulation:
• 1 degree horizontal resolution, 100 yrs, dt = 15mins , 30 levels
• => 3,079,296,000,000 solves of an ODE of order(nspecies)
• When it fails, it does something reasonable that can be handled.

• Stable, accurate
• Sufficient to capture the relevant behavior

Implicit Method Example (Trapezoidal)
!"#$ %!"

&' =)
* [, -./) + , -.]

• Algebraic solve for -./)
• g -./) = 0

• Often use Newton method (or peudo-Newton Iterations)
• g 4 = 0
• 4./) = 4. − 6 7"

68 7"
• 9′(4.) is the Jacobian.

• expensive, Sparse solve, yet more methods
• Computing 9= 4. is ~2.5 times as expensive as forcing
• Factoring/solving Jacobian is very expensive – many optimizations
• Some methods compute these iterates approximately
• Sometimes Newton iterates diverge

Considerations

• Solar Terminator
• Very rapid transients
• Time-varying rate constants
• Rosenbrock fails if solar terminus crosses cell during time step

• Sun can rise inside the chem-solve time step (during dt)
• Simply use j-values at one end or other of time step

• Conservation. (CL + 2*CL_2)
• Positive definite vmr > 0
• Convergence constraints scale = max(C, vmr) Y_scale = Y / scale

Contexts
• Size of Mechanism (2 reactants -> 1e6 reactants)

• Size of domain (box, 3d global, LES; number of time steps)

• Efficiency, robustness

• Need for adjoint

• Types of dependency on environmental conditions (T, P, SAD, aqueous phase storage)

• Cost (wallclock vs charges for solution vs energy consumed)

• Do rate constants vary inside chemistry time step?

• Exothermic? Might need Jacobian w.r.t. temperature

• Can you construct a Jacobian? if not, difficult to make stable. Numerical Jacobian or projection controls.

• Accuracy vs speed of computation

• Operator splitting (photolysis and kinetics, vs constant photolysis)

• Software Engineering (thread-safe, thread-aware, multi-tasking, data size and typing, languages/compilers/frameworks)

• Complexity of representation vs generality of solution method (e.g., Linear Solver)

• Hardware architecture (vectorization, GPU’s, Nspecies/cache size)

• Optimizations (Hard-coded LU factorization and solves)

• Restarts due to accuracy constraints (accuracy estimates on solution; solar changes during time step)

• Absolute and relative tolerances on errors in solution of ODE for each species

NCAR model usage
CESM
• Implicit, except for slowly varying chemicals
• If Newton iteration fails, subdivide the time step
• Sparse linear algebra is sophisticated
WRF
• Rosenbrock – higher order, a bit more fussy
• Implicit, similar to Runge-Kutta, with a few other corrections
• Error estimates lead to subdivisions of the time step
• Sparse linear algebra is sophisticated
GECKO
• So many chemicals that explicit representation of forcing uses indirect addressing
• No Jacobian, estimate of unstable directions

Choose among these

• Fast Computation
• Fast Development Cycle
• Robust
• Extensible code
• Easy-to-read code
• Inexpensive to develop

Research
• Continuous between Implicit and Explicit – exposes reasons behind instability

• !" #$ − !" 0 = #$ 1 −) * !" 0 +) * !" #$
• GPU’s
• “Shove everything into the Chemistry solver”

• Emissions
• Deposition
• Microphysics

• Solve for both concentration and variability of concentration
• Chemistry solvers in models

• Unique requirements speed and robustness
• Use cases (number of solves, consistency of Jacobian form during solve)
• Non-symmetric Sparse Jacobian

• Computational cost vs Energy cost
• Cost relative to other processes (e.g., transport)
• Test Suites?

In Application

• Community
• Familiarity with tools (KPP, mozartPP, fortran, run scripts, software)
• Tested in many experiments (Trust)
• Speed/cost
• Embedding model probably has something implemented
• Documentation (user, traceability)
• Access to baseline chemistry mechanisms

Requirements
Consistency (Order > 2)

• Resolution->0
• Number of reactions and species
• Order of Approximation
• Conservation laws (mass, stoichiometry)

Stability ! " < 1
Engineering Constraints

• Time splitting
• Exothermic reactions – Flame fronts
• Computational time

• Computation of f
• jacobian solves, sparse solves.

• Complexity of method (implication for adjoint)
• Robust

• When things fail
• Subdividing the time step

• Context
• Software/hardware (threading / tasks / compilers)
• Fundamental kinetics vs simulation of weather/climate

• Result is good enough – testing?

Thank you

Resources

• Stoer, Bulirsch; Introduction to Numerical Analysis
• Press et. al.; Numerical Recipies
• Wilkinson; The Algebraic Eigenvalue Problem
• Golub, VanLoan; Matrix Computations
• Packages
• FATODE
• VSODE
• KPP

