
The Chemical Kinetics 
Time Step

a detailed lecture

Andrew Conley
ACOM Division



Simulation Time Step

• Deep convection
• Shallow convection
• Stratiform tend (sedimentation, detrain, cloud fraction, microphysics)
• Aerosol wet chemistry
• Radiation
• Couple (land, ice, ocean)
• Transport
• Sink/source for chemicals

• Deposition, kinetics, emissions
• Vertical diffusion
• Aerosol dry deposition
• Gravity wave drag



Trust the solver?

• Robust – It can’t break, ever!

• 1 degree horizontal resolution, 100 yrs, dt = 15mins , 30 levels

• => 3,079,296,000,000 solves of an ODE -- order(nspecies)

• When it fails, it does something reasonable that can be handled.

• Stable 

• Consistent, accurate enough for application

• Sufficient to capture the relevant behavior

• Scientists expect to trust results



Requirements
Consistency 

• Resolution->0 
• Number of reactions and species 
• dt->0
• Conservation laws (mass, stoichiometry)
• Time splitting
• Positive Definite

Stability
Engineering Constraints

• Exothermic reactions – Flame fronts
• Computational time (number of matrix solves and f evals)

• Computation of f
• jacobian solves, sparse solves.

• Complexity of method (implication for adjoint)
• Robust

• When things fail
• Subdividing the time step

• Context
• Software/hardware (threading / tasks / compilers)
• Fundamental kinetics vs simulation of weather/climate

• Result is good enough – testing?



Simple Example (Terminator Chemistry Test)

Rates
R(1) = ! ∗ [$%&]
R(2) = 1 ∗ [$%]&

Differential Equation
)[*+,]
)- =  -! [$%&] + 1 [$%]&

)[*+]
)- = 2j [$%&] - 2 [$%]&

$%& → $% + $% ! Photolytic Decomposition

$% + $% → $%& 1 Recombination
Lauritzen et. al.  2015 Assume 

rate constants don’t vary during time step
f(solar, T, P, Surface Area Density, …)
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Non-linear



y’ = y2  y(0) = y0

Solution: y = 1 / (y0 – t)

Blows up at t = y0

Implications?

• Mass increases without bound

• Believe that?

• But mass is bounded (or our list of reactions is wrong.)

• “Don’t worry, be happy”



y’ = f(y)      Theory

• !" # exists -> unique solution exists
• !⃗(#⃗, ') -> More complicated conditions for existence, uniqueness
• Hope?
• Seems to work, except when we implement bad collections of reactions
• Scientists trust the underlying numerical method
• Learn from linear systems



![#$%]
!' =  -([)*+] + 1 [)*]+

![#$]
!' = 2([)*+] - 2 [)*]+

Linear Form
!
!'

.#$%.#$ = −( 2[)*]
2( − 4[)*]

.#$%.#$
!2
!' =

!3
!2 4 = 54

Linearized (forward sensitivity)
)*+ → )* + )* ( Photolytic Decomposition
)* + )* → )*+ 1 Recombination

Lauritzen et. al.  2015 
84
89 = :(4)
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Forcing

45
46 =

47
45 5 = 85

45
46 = 7(5)

Jacobian



Stiffness

• !"!# = % '⃗ % ' = !(⃗
!"

• Jordan Normal Form

• )*+ % ) = ,
• Diagonal of eigenvalues (-+, -/, ..)
• Rank of A is ~(number of species – # conservation laws)

Stiffness:  |-123| 45
> 1    Be Careful.  This is a stiff ODE.

< 1    Ok 

< 
+
6 Smaller is better, but…



Stiffness

• !"
!# = % '⃗ % ' = !(⃗

!"
Stiffness:  |*+,-| ./

> 1    Be Careful.  This is a stiff ODE.

< 1    Ok 

< 
0
1 Smaller is better

Eigenvalues vary with mechanism and local environment

Time step, ./, imposed by external model

A-priori estimates are rare

Computation can be expensive (Krylov methods)

If it is atmospheric chemistry 

• it is probably stiff (or make ./ larger)

• or uninteresting from a solver viewpoint



!
!"

#$
#% =

−5 1
1 − $

*

#$
#% + = {0,−5.2}

Initial Condition:
#$
#% = 1

5
Solution: 

#$
#% (3) = 1

5 56∗"

Initial Condition: 
#$
#% = 0.5

5.1
Solution: 

#$
#% (3) = 1

5 + 0.1 −5
1 58(*.%)"



Forward Euler (explicit)

! "# − !(0)
"# = )(! 0 )

!*= +! −> ! "# − !(0)
"# = + ! 0

! "# = 1 + + "# ! 0

! / "# = 1 + + "# 0 ! 0



Forward Euler !" = −5 !



Forward Euler
! "# − !(0)

"# = ) 0 = * ! 0

[*"# = ,]

! .
/ , = 1 + , . ! 0 = 2 , .

Need |2 , | = 1 + , < 1



Forward Euler    !"= $ ! = % ! ! = !&' ()

! *+ − !(0)
*+ = $ 0 = % ! 0

! *+ = 1 + % *+ ! 0

! 2 *+ = 1 + % *+ 3 ! 0
[%*+ = 5]

Numerical:    ! 3
( 5 = 1 + 5 3 ! 0

Exact:      ! 3
( 5 = '3 7 ! 0



Backward Euler (implicit)

! "# − !(0)
"# = ) "# = * ! "#

! +
* , = 1 − , ./ ! 0

Exact:  ! /
0 , = 1/ 2 ! 0

3 , = 1 − , .4



Forward Euler
Not A-stable

Backward Euler
A-stable

! " ! "

" = $ %& " = $ %&



Forward Euler !" = −5 !



Concerned: ( > 0?
• Mass conservation 
• But away from equilibrium, 

could ( > 0?
• Also, not everything is linear 

near equilibrium

+ = ( -.

/ +



Popular Methods

• Trapezoidal (Implicit)

• !"#$ %!"&' = )
* [ , -./) + , -. ] 2 3 = )/$45

)%$45

• Adams-Bashforth (multistep, explicit)
• !"#$ %!"

&' = 6* , -. − )
* ,(-.%))

• Runge-Kutta (commonly RK4, explicit)
• Multistep, but  -:';<= depends on , -:';<=%)
• Reduces to Simpson’s rule if , -, ? not a function of -



Linear Stability

• A-stable 
• If ! " < 1 includes all negative real numbers

• L-stable
• If, additionally ! " → 0 '( " → −∞

• B-stability
• Stability for Runge-Kutta methods

• No explicit method is linearly A-stable



Choose

• Trapezoidal (Implicit)

• !"#$ %!"&' = )
* [ , -./) + , -. ] 2 3 = )/$45

)%$45

• Adams-Bashforth (multistep, explicit)
• !"#$ %!"

&' = 6* , -. − )
* ,(-.%))

• Runge-Kutta (commonly RK4, explicit)
• Multistep, but  -:';<= depends on , -:';<=%)
• Reduces to Simpson’s rule if , -, ? not a function of -



Requirements
Consistency 

• Resolution->0 

• Number of reactions and species 

• Order of Approximation

• Conservation laws (mass, stoichiometry)

Stability     ! " < 1 ! " → ∞ → 0
Engineering Constraints

• dt > 0

• Positive Definite

• Time splitting

• Exothermic reactions – Flame fronts

• Computational time (number of matrix solves and f evals)
• Computation of f

• jacobian solves, sparse solves.

• Complexity of method (implication for adjoint)

• Robust

• When things fail

• Subdividing the time step

• Context

• Software/hardware (threading / tasks / compilers)

• Fundamental kinetics vs simulation of weather/climate

• Result is good enough – testing?



Accuracy (consistency)

• Adams-Bashforth
• !"#$ %!"&' = 

(
) * +, − .

) *(+,%.)
• Taylor expand and get errors relative to +1= * +
• Error < 4(&')5

.) max( *111 )
• Local order 3,  global order 2 
• Consistent, not A-stable

• Order has to have local order larger than 1 to be consistent
• Error terms can drive subdivision of time step (Rosenbrock method)

• Convergence = Stabile + Consistent So what? (dt > 0)



Conservation

• Stoichiometry implies atoms are conserved.

• 2 "#$ + "# = Constant
• As many 0 eigenvalues as atoms – perhaps.
• Numerical conservation?

"#$ → "# + "# ( Photolytic Decomposition
"# + "# → "#$ 1 Recombination



Other consistency-like considerations

• Do we have all the relevant reactions to support study?
• “chemical resolution/consistency”

• Horizontal resolution: 
• Nonlinear
• <v1> <v2> ?=? <v1v2>



MPAS

Biogenic Emissions, chemistry,  CONUS refinement

Rebecca Schwantes, Forrest Lacey, In Development

CESM-SE



Requirements
Consistency 

• Resolution->0 
• Number of reactions and species 

• Order of Approximation
• Conservation laws (mass, stoichiometry)

Stability ! " < 1
Engineering Constraints

• Positive Definite
• Time splitting
• Exothermic reactions – Flame fronts

• Computational time (number of matrix solves and f evals)
• Computation of f

• jacobian solves, sparse solves.

• Complexity of method (implication for adjoint)
• Robust

• When things fail

• Subdividing the time step

• Context
• Software/hardware (threading / tasks / compilers)

• Fundamental kinetics vs simulation of weather/climate

• Result is good enough – testing?



Trust the solver?

• Global simulation: 
• 1 degree horizontal resolution, 100 yrs, dt = 15mins , 30 levels
• => 3,079,296,000,000 solves of an ODE of order(nspecies)
• When it fails, it does something reasonable that can be handled.

• Stable, accurate
• Sufficient to capture the relevant behavior



Implicit Method Example (Trapezoidal)
!"#$ %!"

&' = )
* [ , -./) + , -. ]

• Algebraic solve for -./)
• g -./) = 0

• Often use Newton method (or peudo-Newton Iterations)
• g 4 = 0
• 4./) = 4. − 6 7"

68 7"
• 9′(4.) is the Jacobian.  

• expensive, Sparse solve, yet more methods
• Computing 9= 4. is ~2.5 times as expensive as forcing
• Factoring/solving Jacobian is very expensive – many optimizations
• Some methods compute these iterates approximately
• Sometimes Newton iterates diverge



Considerations

• Solar Terminator 
• Very rapid transients
• Time-varying rate constants
• Rosenbrock fails if solar terminus crosses cell during time step

• Sun can rise inside the chem-solve time step (during dt)
• Simply use j-values at one end or other of time step  

• Conservation. (CL  + 2*CL_2)
• Positive definite    vmr > 0 
• Convergence constraints    scale = max(C, vmr)      Y_scale = Y / scale



Contexts
• Size of Mechanism (2 reactants -> 1e6 reactants) 

• Size of domain (box, 3d global, LES; number of time steps)

• Efficiency, robustness

• Need for adjoint

• Types of dependency on environmental conditions (T, P, SAD, aqueous phase storage)

• Cost (wallclock vs charges for solution vs energy consumed)

• Do rate constants vary inside chemistry time step?

• Exothermic?  Might need Jacobian w.r.t. temperature

• Can you construct a Jacobian? if not, difficult to make stable.  Numerical Jacobian or projection controls.

• Accuracy vs speed of computation

• Operator splitting (photolysis and kinetics, vs constant photolysis)

• Software Engineering (thread-safe, thread-aware, multi-tasking, data size and typing, languages/compilers/frameworks)

• Complexity of representation vs generality of solution method (e.g., Linear Solver)

• Hardware architecture (vectorization, GPU’s, Nspecies/cache size)

• Optimizations (Hard-coded LU factorization and solves)

• Restarts due to accuracy constraints (accuracy estimates on solution; solar changes during time step)

• Absolute and relative tolerances on errors in solution of ODE for each species



NCAR model usage
CESM 
• Implicit, except for slowly varying chemicals
• If Newton iteration fails, subdivide the time step
• Sparse linear algebra is sophisticated
WRF 
• Rosenbrock – higher order, a bit more fussy
• Implicit, similar to Runge-Kutta, with a few other corrections
• Error estimates lead to subdivisions of the time step
• Sparse linear algebra is sophisticated
GECKO
• So many chemicals that explicit representation of forcing uses indirect addressing
• No Jacobian, estimate of unstable directions



Choose among these

• Fast Computation 
• Fast Development Cycle
• Robust
• Extensible code 
• Easy-to-read code 
• Inexpensive to develop



Research
• Continuous between Implicit and Explicit – exposes reasons behind instability

• !" #$ − !" 0 = #$ 1 − ) * !" 0 + ) * !" #$
• GPU’s
• “Shove everything into the Chemistry solver” 

• Emissions 
• Deposition
• Microphysics

• Solve for both concentration and variability of concentration
• Chemistry solvers in models

• Unique requirements speed and robustness
• Use cases (number of solves, consistency of Jacobian form during solve)
• Non-symmetric Sparse Jacobian

• Computational cost vs Energy cost
• Cost relative to other processes (e.g., transport)
• Test Suites?



In Application

• Community
• Familiarity with tools (KPP, mozartPP, fortran, run scripts, software)
• Tested in many experiments (Trust)
• Speed/cost
• Embedding model probably has something implemented
• Documentation (user, traceability)
• Access to baseline chemistry mechanisms



Requirements
Consistency (Order > 2)

• Resolution->0 
• Number of reactions and species 
• Order of Approximation
• Conservation laws (mass, stoichiometry)

Stability ! " < 1
Engineering Constraints

• Time splitting
• Exothermic reactions – Flame fronts
• Computational time 

• Computation of f
• jacobian solves, sparse solves.

• Complexity of method (implication for adjoint)
• Robust

• When things fail
• Subdividing the time step

• Context
• Software/hardware (threading / tasks / compilers)
• Fundamental kinetics vs simulation of weather/climate

• Result is good enough – testing?



Thank you



Resources

• Stoer, Bulirsch; Introduction to Numerical Analysis
• Press et. al.; Numerical Recipies
• Wilkinson; The Algebraic Eigenvalue Problem
• Golub, VanLoan; Matrix Computations
• Packages
• FATODE
• VSODE
• KPP


