AEROSOL INTERACTIONS

Mary Barth

ACOM/MMM, National Center for Atmospheric Research

Thanks to Jerome Fast (PNNL) who provided material via the WRF-Chem tutorial lecture

OUTLINE

- Aerosol Radiation Interactions
 - AOD measurements versus model prediction
- Aerosol Cloud Interactions
- Processes that affect number of Aerosols
 - Aqueous phase chemistry
 - Heterogeneous chemistry
 - Lightning-NO_x

Throughout talk will note how different models represent aerosol properties or how they address a model process CAM-Chem, GEOS-Chem, WRF-Chem, WRF-CMAQ

Thanks also to Andrew Gettelman (NCAR), Colette Heald (MIT), and Shawn Roselle (EPA) who ensured I say the right thing

3D ATMOSPHERIC CHEMISTRY MODELS CAN HAVE DIFFERENT AEROSOL CONFIGURATIONS

CAM-Chem with bulk aerosol

CAM-Chem with Modal Aerosol Module (MAM4)

GEOS-Chem with bulk aerosols

GEOS-Chem with sectional schemes (TOMAS, APM)

WRF-Chem with bulk aerosol scheme (GOCART)

WRF-Chem with modal scheme (MADE, MAM4)

WRF-Chem with sectional scheme (MOSAIC)

WRF-CMAQ with modal scheme

Why have different configurations of models?

Outline:

• Aerosol – Radiation Interactions

AEROSOL-RADIATION INTERACTIONS

SOLAR RADIATION SPECTRUM

• Aerosols affect radiation in visible wavelengths

AEROSOLS IN THE TROPOSPHERE

- Aerosols are much more heterogeneous in nature compared to H₂O (v), CO₂
- Aerosols challenging to simulate
 - Episodic sources
 - Diverse composition: dust, sea salt, black carbon, brown carbon, sulfate, nitrate

Aerosol Optical Depth at 555 nm from MiSR, April 2017 monthly average

HOW DO WEATHER AND CLIMATE MODELS REPRESENT AEROSOL EFFECTS ON RADIATION?

- Not at all: aerosols do not affect radiation and therefore surface and latent heat fluxes
- 2) Use aerosol climatological aerosol properties that can vary in space and seasonality WRF, NCEP models
- 3) Predict aerosol concentrations and optical properties

WRF-Chem, CAM-Chem, GEOS-Chem, WRF-CMAQ

Important aerosol properties to predict:

- Extinction coefficient, aerosol optical depth
- Single scattering albedo
- Asymmetry factor
- Aerosol water
- Refractive indices
- Mixing state of aerosols

EXTINCTION COEFFICIENT, AEROSOL OPTICAL DEPTH

Extinction coefficient: fractional depletion of radiance per unit path length (km⁻¹) due to scattering and absorption by aerosols

Aerosol optical depth (AOD) or **thickness** (AOT): integrated extinction coefficient over a vertical column, $I / I_o = e^{-AOD}$

- AOD = 0 no aerosol effect
- AOD ~ I "large"
- AOD > 1 extremely high aerosol concentrations

SINGLE SCATTERING ALBEDO (SSA)

- SSA is ratio of scattering to extinction efficiency, $\omega_o = k_s / (k_a + k_s)$
 - SSA = I all particle extinction due to scattering
 - SSA = 0 all particle extinction due to absorption (does not happen in reality)

Single scattering albedo of fine mineral dust aerosols is controlled by iron concentration

Moosmuller et al. (2012) J. Geophys. Res.

SINGLE SCATTERING ALBEDO (SSA)

- SSA is ratio of scattering to extinction efficiency, $\omega_o = k_s / (k_a + k_s)$
 - SSA = I all particle extinction due to scattering
 - SSA = 0 all particle extinction due to absorption (does not happen in reality)

SSA is sensitive to assumptions in model configuration

- Aerosol water
- Aerosol mass concentrations
- Refractive index of dust

WRF-Chem simulation of aerosols

Sensitivity tests of optical properties use WRF-Chem aerosol concentration predictions in an offline radiation calculation. Shrivastava et al. (2013) J. Geophys. Res.

ASYMMETRY FACTOR

Preferred scattering direction (forward or backward) for the light encountering the aerosol particles

- Approaches I for scattering strongly peaked in the forward direction
- Approaches I for scattering strongly peaked in the backward direction
- g = 0 means scattering evenly distributed between forward and backward scattering

Depends on both size and composition of aerosols

IMPORTANCE OF AEROSOL WATER

- Uptake of water by aerosols depends on relative humidity
- Composition affects water uptake (hydrophobic vs hydrophilic aerosol)
- Different ways to compute aerosol water
 - Specified growth factors from GADS GEOS-Chem bulk
 - Hygroscopicity (K value, Petters and Kreidenweis (2007) WRF-Chem bulk, GEOS-Chem TOMAS, WRF-CMAQ
 - Aerosol water explicitly predicted
 WRF-Chem MOSAIC, WRF-CMAQ
 - Aerosol water determined from Kohler theory = f(RH, K) CAM-Chem

REFRACTIVE INDICES

- Refractive index of a substance is a dimensionless number that describes how light propagates through a medium
- Refractive indices in models based on literature values derived from laboratory experiments, vary with wavelength for some aerosol compositions
- Challenge: brown carbon

Default Values for SW Radiation in WRF		
<u>r</u>	eal part	imaginary part
BC =	1.850 +	+ 0.71i
OM =	1.450 +	+ 0.00i
SO ₄ =	1.468 +	+ 1.0e-9i
$NH_4NO_3 =$	1.500 +	+ 0.00i
NaCl =	1.510 +	+ 0.866e-6i
dust =	1.550 +	+ 0.003i
$H_2O =$	1.350 +	+ 1.52e-8i
These values vary depending on wavelength and from one model to another		

MIXING RULES FOR MIE CALCULATIONS

Often assumed that all particles within a size range have the same composition, although relative fraction can differ among size ranges.

•

Assumptions regarding mixing:

External Mixture of Aerosols

Internal Mixture of Aerosols

bulk aerosol schemes

sectional aerosols schemes

- Volume Averaging: averaging of refractive indices based on composition
- **Shell-Core**: black carbon core and average of other compositions in shell (Ackermann and Toon, 1983; Borhren and Huffman, 1983)
- **Maxwell-Garnett:** small spherical randomly distributed black carbon cores in particle (Borhren and Huffman, 1983)

Both External and Internal Mixture CAM-Chem MAM4, CMAQ

COMPARISON OF AEROSOL OPTICAL PROPERTIES AMONG REGIONAL MODELS

Uncertainties of simulated aerosol optical properties induced by assumptions on aerosol physical and chemical properties: An AQMEII-2 perspective

Curci et al. (2014) Atmos. Environ.

Aerosol optical depth over AERONET stations in July 2010 simulated by AQMEII-2 models (COSMO-ART, COSMO-MUSCAT, WRF-Chem, WRF-CMAQ, GEM-MACH) Europe: 8 models, 85 AERONET stations North America: 3 models, 77 AERONET stations

- Calculate optical properties from several aerosol models using same assumptions.
 - Test choices on mixing state,refractive index, density andhygroscopicity.
 - The most sensitive parameter is the aerosol mixing state.
 - The related uncertainty on calculated AOD and SSA is 30–35%.

AEROSOL IMPACTS ON CHEMISTRY Simulated: Simulated: Too Many or Too Thick Too Few or Too Thin **Observed Aerosols** 0 NO₂ + hv NO + O reaction rate too high reaction rate too low impact of clouds much larger NO + 0 NO₂ + h reaction rate too high reaction rate too low -T.T-TIP

EFFECTS OF AEROSOL-RADIATION INTERACTIONS ON CHEMISTRY

U.S. SO₂ EMISSIONS AFFECT TEMPERATURES OVER NORTHERN HEMISPHERE

Conley et al. (2018) J. Geophys. Res.

Multi-model surface temperature response in K due to zeroing out US SO_2 emissions.

3 models participated in study: CESM, GFDL, and GISS

Both aerosol-radiation and aerosolcloud interactions are represented

The number of cloud condensation nuclei affects the cloud drop size distribution, and consequently cloud albedo and radiation budget

AEROSOL CLOUD INTERACTIONS

General Description and Assumptions

CLOUD DROP ACTIVATION

Models that use this approach: WRF-Chem MOSAIC aerosols CAM-Chem coupled WRF-CMAQ

Köhler Theory

When a critical supersaturation (S $_{\rm c}$) is reached, cloud drops form

 \rightarrow Aerosols are activated when the air entering the cloud has maximum supersaturation $S_{max} > S_{c}$

Supersaturation (S) is a function of the vertical velocity

S_{max} depends on aerosol size and composition [*Abdul Razzak and Ghan,* 2000, 2002]

Number of cloud drops formed based on fraction of aerosol mass or number in the bin or mode having $S_{max} > S_{c}$

MAXIMUM SUPERSATURATION DEPENDS ON AEROSOL COMPOSITION

Hygroscopicity

Tendency of aerosol to absorb water vapor from the surrounding atmosphere

Hygroscopicity depends on aerosol composition, Kappa (K) values: $SO_4 = 0.5$ $NO_3 = 0.5$ $NH_4 = 0.5$ OC = 0.14 (some OC may be more hydrophilic) BC = 1.0e-6 hydrophobic Dust = 0.10 - 0.14NaCl = 1.16 hydrophilic

Mixture of aerosols (i.e. internal mixture) often uses a volume weighted bulk hygroscopicity

```
Petters and Kreidenweis (2007) Atmos. Chem. Phys. for more information on K values
```

CLOUD DROP ACTIVATION

Köhler Theory

Cloud drop activation based on Kohler theory ($S_{max} > S_c$) occurs only at cloud base. Usually the case, but not always (e.g., deep convection).

Cloud drop activation dependent on vertical velocity in the grid cell. A coarse grid spacing will have smaller vertical velocities than a fine grid spacing. \rightarrow Use a subgrid vertical velocity CAM-Chem bases this on TKE (turbulent kinetic energy) WRF-Chem and coupled WRF-CMAQ use "cloud resolving" grid spacings ($\Delta x < 5$ km) where this is less of an issue, yet vertical velocity still varies with grid sizes.

Models that use this approach: WRF-Chem MOSAIC aerosols CAM-Chem coupled WRF-CMAQ

ICE NUCLEATION

Multiple ways ice nucleation can form.

Mineral dust serves as main form of ice nucleus (IN)

Models that allow predicted number of aerosols to affect ice crystal concentrations: CAM-Chem coupled WRF-CMAQ

From U. Lohmann (ETH) group web page:

http://www.iac.ethz.ch/group/atmospheric-physics/research/ice-nucleation.html

CLOUD CONDENSATION NUCLEI (CCN), ICE NUCLEI (IN)

CCN: Number concentration of aerosols that will be activated into cloud drops

IN: Number concentration of aerosols that will be nucleated into ice crystals

Note: Cloud physics models (or modules) are only concerned about the CCN and IN number. Thus, some of these cloud models predict only CCN and IN and not more explicit aerosol composition and sizes.

EXAMPLES OF AEROSOL-CLOUD INTERACTIONS

- Marine Stratocumulus (Yang et al., 2011)
 Aerosol effects on cloud drop size
- Convective Clouds (several papers)
 Aerosol effects on precipitation

Detailed cloud physics calculations for < 2 hour simulation

• Polluted clouds produce less precipitation, initiation of precipitation is delayed and lifetime of clouds is longer

• More water vapor transported to mid troposphere in polluted conditions

Teller and Levin (2006) Atmos. Chem. Phys.

Detailed cloud physics calculations for several hour simulation

- Change in CCN and Giant CCN concentrations sometimes lead to less precipitation sometimes more, and it changes with time
- Variations in aerosol concentration affect both physical and dynamical characteristics of storms
- Venting of aerosols actually cleans lower atmosphere consequently changing inflow aerosol concentrations
- Cold pools differ substantially between simulations altering storm dynamics

Van den Heever et al. (2006) J. Atmos. Sci. Van den Heever and Cotton (2007) J. Appl. Meteor.

Percent Change in Total Precipitation

Aerosol-Cloud Interactions for a case in Gangetic Basin

Sarangi et al. (2015) J. Geophys. Res. allowed aerosols to affect both cloud physics and radiation

Aerosol anthropogenic emissions altered to evaluate changes

Increasing Aerosol Concentrations via emissions:

BC aerosol in PBL is absorbing radiation, heating PBL

- \rightarrow Increase temperature and CAPE
- \rightarrow Form more, smaller cloud drops near cloud base
- ightarrow Increase updraft velocities below the freezing level
- ightarrow Increase cloud top height
- \rightarrow Aerosol-induced cloud invigoration

Although aerosols were removed by precipitation during the first day (August 23), they were quickly replaced by the aerosol emissions

Aerosol concentration as f(date in August)

Aerosols Affect Severe Storm Environment

Inclusion of smoke to an environment already conducive to severe thunderstorm development can increase the likelihood of significant tornado occurrence

PROCESSES THAT AFFECT NUMBER OF CCN AND IN

Ice Nuclei (i.e. dust concentrations)

Emissions, transport, dry deposition, wet deposition

 Coagulation or condensation of hygroscopic aerosols and HNO₃ makes the dust more hygroscopic and more likely to be removed by precipitation.

Cloud Condensation Nuclei (i.e. hygroscopic aerosols)

Emissions, transport, dry deposition, wet deposition Chemistry: gas-phase, heterogeneous reactions, and aqueous-phase chemistry Lightning-NO_x production

PROCESSES THAT AFFECT NUMBER OF CCN AND IN

Ice Nuclei (i.e. dust concentrations)

Emissions, transport, dry deposition, wet deposition

 Coagulation or condensation of hygroscopic aerosols and HNO₃ makes the dust more hygroscopic and more likely to be removed by precipitation.

Cloud Condensation Nuclei (i.e. hygroscopic aerosols)

Emissions, transport, dry deposition, wet deposition Chemistry: gas-phase, heterogeneous reactions, and aqueous-phase chemistry

Lightning-NO_x production

EFFECTS OF ACID RAIN

Aqueous chemistry, SO_2 (aq) \rightarrow sulfate, creates most of the acidity in the rain

Acidity is measured by the pH

PH VALUES ACROSS U.S. IN 1994

AQUEOUS PHASE CHEMISTRY

Sulfur Chemistry

- Dissociation of SO₂ makes SO₂ a soluble trace gas
- Effective Henry's Law for SO₂ depends on T and $pH = -log_{10}[H^+]$

```
Key oxidants of aqueous-phase SO<sub>2</sub>:

H_2O_2 at pH < 5, O_3 at pH > 5

O_2 catalyzed by transition metals (Fe<sup>3+</sup>, Mn<sup>2+</sup>)

NO<sub>2</sub> at high pH and when NO<sub>2</sub> > 20 ppbv (fog in China)

HOBr
```

AQUEOUS PHASE CHEMISTRY

Organic Chemistry

Oxidation of Aldehydes by OH \rightarrow organic acids

- Other aldehydes (glyoxal, methyl glyoxal) undergo aqueous-phase oxidation too
- Form carboxylic and dicarboxylic acids
- Dicarboxylic acids \rightarrow secondary organic acid production

Aqueous chemistry increases aerosol mass concentrations that can affect CCN concentrations and radiation

"Hoppel curve": Hoppel et al. (1986) GRL

MODELING AQUEOUS PHASE CHEMISTRY

Methods vary among models

- Solve gas and aqueous chemistry together (or sequentially, e.g. WRF-Chem)
- Prescribe or diagnose **pH** (GEOS-Chem, WRF-CMAQ, WRF-Chem)
- Cloud physics prediction of **liquid water content** affects results
- Size of drops affects diffusion of gases into cloud drops

ORGANIC AQUEOUS CHEMISTRY

Chen et al. (2007) Atmos. Chem. Phys. Show difference in SOA mass concentrations caused by aqueous-phase carbonyl oxidation, using WRF-CMAQ specialized to CACM chemistry and MPMPO.

Fahey et al. (2017) *Geophys. Model Develop.* Significant advancements in representing organic aqueous chemistry in WRF-CMAQ making use of the Rosenbrock RODAS solver.

HETEROGENEOUS CHEMISTRY

N₂O₅(g) + H₂O(l) → 2 HNO₃ k = S_a/[r_a/D_g + 4/(w γ)]

Reaction Rate controlled by surface area (S_a), diffusivity (D_g) into drop and uptake coefficient (γ)

Models include heterogeneous chemistry along with their gasphase mechanism: WRF-Chem TI MOZCART (13 heterogeneous reactions) CAM-Chem (4 tropospheric heterogeneous reactions) GEOS-Chem (several tropospheric heterogeneous reactions) WRF-CMAQ (several tropospheric heterogeneous reactions)

Predicted S_a and prescribed γ can vary among models

HETEROGENEOUS CHEMISTRY

Mao et al. (2013) Atmos. Chem. Phys. Show large effect (10 ppbv) on O_3 caused by HO_2 uptake onto aerosols catalyzed by transition metal ions, using GEOS-Chem.

HETEROGENEOUS CHEMISTRY

Dust storm over Indo-Gangetic Plain

Kumar et al. (2013) Atmos. Chem. Phys. show dust effects on O_3 using WRF-Chem.

To match measurements, both the effect on photolysis and the heterogeneous reactions are needed.

LIGHTNING-NO_X AFFECTS AEROSOLS

- Lightning generates NO which quickly equilibrates with NO₂
- Then complex NO_x chemistry includes production of HNO₃
- HNO₃ adsorbs onto aerosols (aerosol thermodynamics)
- Aerosol concentrations increase which affects radiation and clouds

LIGHTNING FORMATION

Charge Separation

- Side-by-side updrafts and downdrafts
- Updrafts transport cloud droplets towards top of storm
- Downdrafts with falling hail and graupel
- Graupel water collisions creating a "soft shell" graupel or hail particle
- Further graupel drop collisions cause electrons to shear off of the ascending water droplets and collect on the falling ice particles
- Charge separation with negative charge in lower cloud and positive charge in upper part of storm

If aerosols affect the cloud physics and dynamics, then aerosols likely affect the lightning flash rate

http://www.srh.weather.gov/srh/jetstream/lightning/lightning.html

LIGHTNING FLASH RATES CORRELATED WITH UPDRAFT VOLUME, PRECIPITATION ICE MASS

Mansell and Ziegler (2013) J. Atmos. Sci.

- Cloud resolving model simulation of explicit prediction of charge examined effect of CCN on predicted lightning flash rate
- Graupel mass corresponds with lightning channel segments

AEROSOLS AFFECT LIGHTNING FLASH RATES

AEROSOLS AFFECT LIGHTNING FLASH RATES

SUMMARY

- Aerosol Radiation Interactions
 - AOD measurements versus model prediction from AQMEII activity: Mixing state of aerosols is big uncertainty
- Aerosol Cloud Interactions
 - Chemistry Aerosol models use Kohler theory to affect cloud drop activation at *cloud base*
 - Good parameterization for stratus & stratocumulus type clouds
 - Convective clouds are capable of drop activation above cloud base
 - Aerosol effects on ice nucleation is not represented in all models important for cirrus clouds (less so for convection where other processes dominate)
- Processes that affect number of aerosols
 - Aerosols, clouds, and chemistry are intricately linked

Does it make sense?

