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Atmospheric chemists are interested in a wide range of issues
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To address these issues we need models:
simplified representations of complex system amenable to analysis

• Minimize number of variables
• Ignore minor processes
• Draw on empirical relationships

“All models are wrong, but some are useful” (G. Box, 1976)
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Observations
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• Interpret observations
• Gain understanding of processes
• Make future projections



What kind of models?

• Physical models: simplify the physical equations describing the system
- The most fundamental quantitative approach

• Heuristic models: draw mental inferences based on knowledge/experience
- Your brain is a powerful computer. Use it!

• Statistical models: use empirical relationships to make projections
- Need physical basis, but can be very powerful



Statistical model of extreme winter haze events in Beijing
Point process fit of DJF 2009-2017 daily PM2.5 to wind velocity and relative humidity 

Green points are observed occurrences

Expect lower RH over China in future climate 
less frequent extreme air pollution events

Pendergrass et al., in prep. Drew Pendergrass



Physical modeling by solution of continuity equation
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Solve continuity equations for number densities n = (n1,…nK) of ensemble of K species:
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Eulerian advective form in terms of mixing ratios  C = (C1,…CK):
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Break down dimensionality of continuity equation by operator splitting

C(t) C* C(t+Δt) 
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Advection equations: 
PDEs with no coupling 
between species

Chemical equations:
K-dimensional system of ODEs
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Solve for transport and local terms separately over time steps Δt



Eulerian models partition atmospheric domain into gridboxes

Solve continuity equation for 
individual gridboxes

• Present computational limit ~ 108 gridboxes

• In global models, this implies a grid resolution Δx of 
~ 10-100 km in horizontal and 0.1-1 km in vertical

• Courant number limitation u Δt / Δx ≤ 1;
in global models, Δt ~102-103 s

This discretizes the continuity equation in space



Eulerian models often use equal-area or zoomed grids

Equal-area grids: avoid singularities at poles
icosahedral triangular cubed-sphere

Zoomed grids: increase resolution where you need it (or when, in an adaptive grid)
nested stretched



Regional models: limited domain, boundary conditions at edges

WRF domain with successive nests

1-way nesting 2-way nesting



Hybrid sigma-pressure vertical coordinate system
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Lagrangian models track points in model domain (no grid)

U∆t

• Transport large number of points with trajectories from 
input meteorological data base (U) over time steps ∆t

• Points have mixing ratio or mass but no volume

• Determine local concentrations in a given volume by 
the statistics of points within that volume or by 
interpolation

PROS over Eulerian models:
• stable for any wind speed
• no error from spatial averaging
• easy to parallelize
• easily track air parcel histories
• efficient for receptor-oriented problems

CONS:
• need very large # points for statistics
• inhomogeneous representation of domain
• individual trajectories do not mix
• cannot do nonlinear chemistry
• cannot be conducted on-line with meteorology

position
to

position
to+∆t



Lagrangian receptor-oriented modeling
Run Lagrangian model backward from receptor location, 
with points released at receptor location only

• Efficient quantification of source influence distribution 
on receptor (“footprint”)

flow backward in time



Representing non-linear chemistry

Consider two chemicals A and B emitted in different locations, and reacting by

A + B → products

A                     B

gridboxes

A and B react following 
the mixing of gridboxes

A B

A and B never react

Eulerian model Lagrangian model



Reducing model dimension
…because a model shouldn’t be more complicated than it needs to be

• 2-D models used in stratosphere where zonal gradients are weak
- Turbulent diffusion parameterization of eddy meridional transport

• 1-D models used  for boundary layer mixing when horizontal gradients are weak
- Turbulent diffusion and non-local (convective) transport parameterizations

• O-D (box) models when flux divergence can be neglected in continuity equation
- Chemical steady-state models for short-lived species
- Global box models for long-lived species
- Chemical mechanism diagnostic studies



Gaussian plume modeling of point source dispersion

Transport in cross-wind direction is parameterized as diffusive process:
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On-line and off-line approaches to chemical modeling
On-line: coupled to dynamics

GCM conservation equations:
air mass: ∂⍴a /∂t =…
momentum: ∂u/∂t =…
heat: ∂θ/∂t =…
water: ∂q/∂t =…
chemicals: ∂Ci /∂t =…

Off-line: decoupled from dynamics

GCM conservation equations:
air mass: ∂⍴a /∂t =…
momentum: ∂u/∂t =…
heat: ∂θ/∂t =…
water: ∂q/∂t =…

meteorological archive
(averaging time ~ hours)

Chemical transport model:
∂Ci /∂t =…

PROs of off-line vs on-line approach:
• computational cost
• simplicity
• stability (no chaos)
• compute sensitivities back in time
CONs:
• no fast chemical-dynamics coupling
• need for meteorological archive
• transport errors

Chemical data assimilation, forecasts
best done on-line

Chemical sensitivity studies
may best be done off-line



Inverse modeling and data assimilation

Quantify selected variables driving a physical system (state vector x, dim n) by using:
– the observable manifestations of the system (observation vector y, dim m)
– a physical model y = F(x) (forward model)
– a prior estimate xA before the observations have been made
– Statistics for the errors ε in the different components of the problem

prior estimate
xA + εA

observations
y + ε

forward model
y = F(xA) + εM best (posterior)

estimate
ˆˆ ±x ε

statistical fit of x

General approach:

mismatch



Bayes’ theorem: general basis for optimal estimation
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Solution of inverse problem minimizes cost function J(x)
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Prior terms                                           observation terms

Error covariance matrices

corresponds to finding maximum of posterior pdf P(x | y)

- ln P(x | y) =        - ln P(x)                                   - ln P(y | x) 



Model adjoint

If a model can be linearized as a product of matrices, 

( ) ( )= −∆En nACt t t

A = advection
C = chemistry
E = emissions
(for example)

Then the adjoint is the transpose ( ) = AC CA E ET T T T

Application of the adjoint to a unit forcing v = (1, 0,…0)T gives the sensitivity of n1,x(t)  
to the concentration field (and other model parameters) at the previous time step:

1( ) / ( )= ∂ ∂ −∆E C nA vT T T n t t t

n1,x(t)

Full model field
at t - Δt

Useful for:
• source attribution in receptor-oriented problems
• variational minimization of cost function



Increasing computational performance of models

Moore’s law is slowing down, clock speeds are flat

Since we cannot count on faster cores we need to increase the number of cores



Shared-memory vs .distributed-memory model architectures

Shared memory architecture (OpenMP):
easy to code but does not scale well with 
more than ~20 cores

Distributed-memory architecture (MPI):
harder to code but scales much better

Local operations dCi/dt = Pi (C) – Li(C) scale perfectly
column-by column in massively parallel architectures;

Makes chemistry comparatively cheaper as #cores incrreases



Increase model resolution to capture finer-
scale phenomena 

Use more advanced schemes to 
incorporate better scientific knowledge

Use advanced software (e.g. Earth System 
Modeling Framework) for better 
parallelization and model interoperability

Need much more computing 
power

Need to download more 
input data

Compiling and configuring 
models become much more 
difficult 

The better a model becomes, the less accessible it is



A solution: cloud computing

• Swipe your credit card and rent a supercomputer when you need it

• GEOS-Chem code has been ported to the AWS cloud with loaded input data, 
libraries, etc.  Just configure input file and run! 

• Advantages for users:
- No need to purchase an expensive system
- No need to have systems experts to set up the model
- No need to understand the model
- Reproducibility of results from standard model is guaranteed
- Download fully configured model to your own system

Jiawei ZhuangZhuang et al. [BAMS, in prep.]



Atmospheric chemistry modeling has a bright future!

• Many problems to choose from: fundamental, applied, integrative

• Frontier of knowledge is near: many zeroth-order problems remain

• Next frontier in Earth system modeling

• Continual stream of new data sets to challenge us



Chapter 1: The concept of model 

Chapter 2: Atmospheric structure and dynamics   

Chapter 3: Chemical processes

Chapter 4: Model equations, numerical approaches

Chapter 5: Radiative, chemical, aerosol processes

Chapter 6: Numerical methods for chemical systems

Chapter 7: Numerical methods for advection

Chapter 8: Parameterization of small scales

Chapter 9: Surface fluxes

Chapter 10: Model evaluation

Chapter 11: Inverse modeling

Cambridge University Press, 2017

To know more!
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