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% What is model evaluation and why we need it?
% Consideration of Observational Uncertainty in Model Evaluation
% Approaches for Global and Regional Model Evaluation

e Model - Observation Comparisons
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< What is a Good Model Performance?




Model Evaluation: What and Why?
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Model Evaluation
Use of lab measurements, field

campaigns, long-term observational
datasets, satellites

» Assessing skill of a model

» (Gain confidence in model results
* Improved process understanding
-> Improved model approximation
towards real world processes
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Models are numerical
approximations of a wide range of
processes in the atmosphere

How well do models represent
real-world processes?

Model evaluation is an important part of
model development and improvement



Model Evaluation: what and why?

e Model evaluation is a quantitative measure of model fidelity/skill in
representing a specific real-world process/system; either the state of
the atmosphere, a specific process or sensitivities.

e Evaluation helps to characterize model errors and identify missing
processes.

e Evaluation provides a means to improve model process/system
representation.

e Evaluation provides a measure of our confidence in model future
predictions.
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Model evaluation is a quantitative measure of model fidelity/skill in
representing a specific real-world process/system; either the state of
the atmosphere, a specific process or sensitivities.

Evaluation helps to characterize model errors and identify missing
processes.

Evaluation provides a means to improve model process/system
representation.

Evaluation provides a measure of our confidence in model future
predictions.

How to perform like-with-like comparisons?

How to ensure that model compares well with observations for the right
reason?



Consideration of Observational Uncertainty in
Model Evaluation

The following uncertainties in observations pose challenges to model
evaluation:

1. Sampling uncertainty: sparse spatial and temporal resolutions of in-
situ monitoring stations, coarse vertical resolution of remote sensing,
poor observational constraints
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2. Systematic errors in measurements: instrumentation error, drifts in ;
satellite retrievals, change in instruments during observation record,

model information included in retrievals @

3. Representative errors: comparisons of different temporal and spatial
scales, point measurements at a given day vs. model grid average of
the background atmosphere

o0 of

Understanding the range of uncertainties in observations is critical for useful
model evaluation



Different types of Observations

In-situ (sondes, aircraft, surface data) Remote sensing: satellites, lidar

e Direct measurement e A retrieval includes some degree of

_ _ model information
e Uneven and incomplete coverage in

time/space e Comparisons to satellites (different

_ averaging kernels provide different
e Localized measurements vs. broad answers)

model scale (scale mix-match)

Lab Measurements

2015 ACOM Annual Report
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Representativeness: Model Grid Scale

Wlndse at PlattV|II ‘ CO Surface Benzene Concentrations, Platteville, CO

i Measured
Model Grid Cell : Modeled

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Julian Day Hourly Averages

Do we have a fair comparison?
e True model biases or grid resolution issue?
e Transport error?
e Model input error (emissions)?
e Representativeness of observations for larger
scale?

Modeled

Pfister et al., FRAPPE 2014 WRF-Chem Analysis




Sampling Uncertainty: Spatial Scale

Ozonesondes versus Surface Observations
DJF 0, Diff.(%)

Lower Altitude

Higher Altitude

How representative are sparse
measurements?

e Single stations or datasets may be not
representative, potential calibration
issues for different stations

Western Europe e Large coverage of surface
E OuF ; measurements can help reduce
0.4: Sondes f uncertainties through differences
: Surface 5 between single stations

E e Comparison between different
1000hPa E observations (taken at the same time)
can still lead to different answers
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Representativeness: Temporal and Spatial Scale

Model climatology (colored background) versus
climatologies derived from ozonesondes
(symbols) and aircraft (boxes) _
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Tilmes et al. (2016)

Long-term observations

High temporal resolution and
continuity of surface and
ozonesonde observations
generally make them more
representative

Single aircraft campaigns often
target specific questions

A number of different species
are measured

Climatological evaluation
requires filtering of data

Simulate exact location/time
and co-sample model with
observations in space and
time for like-with-like
comparison



Sampling of Background Atmosphere with in-situ

Measurements . |
Recent aircraft measurements target observations of
HIPPO1 Deployment background atmosphere -> climatological evaluation

Sampling of different chemical species using

commercial aircraft:
e MOSAIC (2005-2014) / IAGOS (2014-present)
CARIBIC on Lufthansa Airbus (2004-present)

latitude

Aircraft campaigns designed to sample the
background atmosphere:
e HIPPO: 2009-2011 four seasons over the Atlantic

150 -160 110  -60 e ATom: 2016-2018 four seasons; Atlantic, Arctic,
longitude Pacific, SH high latitudes
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Observations from Satellites

e Satellites continuously measure radiation in various wavelength bands including
ultraviolet (UV), visible (Vis), infrared (IR) and microwave (MW)

e A satellite product is not a true measurement of the derived quantity

e Satellite retrieval of trace species depends on knowledge (assumptions) of the state
of the atmosphere, e.g. presence of clouds and aerosols, the vertical distribution of the
species, and surface properties including topography and albedo.

e Inconsistencies between the assumptions used in the retrieved data and modelled
distribution lead to inflation of errors.

e Coverage depends on measurement method, larger coverage and low vertical
resolution (nadir viewing) vs. high vertical resolution but limited spatial resolution (limb
viewing)

Limb viewing geometry

Figure courtesy
Gabriele Pfister

Figure courtesy Gabriele Stiller



Challenges in deriving Satellite Products from Retrievals

Measurements and model estimates of SO, in the UTLS
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Different satellite observations can show very different results of the same
quantity. In-situ aircraft measurements reveal large bias of satellite observations
of SO, in the upper troposphere lower stratosphere.

-> Improved understanding of the sulfur budget in the stratosphere.

Rollins et al., 2017




Overcoming Challenges for Model-Satellite Comparisons

A Satellite Retrieval

Inconsistencies between satellite data and model output can is NOT an
be minimized with careful consideration of the In-Situ Observation
representativeness (horizontal coverage, temporal 400 VY

sampling, vertical information) of satellite data for model-
satellite comparisons

e Apply appropriate averaging kernel on the model output to
obtain consistent model vertical distribution for comparison with
satellite retrieval

e Sample model data as consistently as possible to the
satellite retrieval in space and time (e.g., overpass time), and
under similar atmospheric conditions (e.g., clear-sky vs. cloudy
sky, day vs. night)

| 825.40200

e Use consistent definitions of atmospheric state (e.g.,
definition of tropopause) - 90851400

970.72844
L1 1l J 1 1

1000

Averaging Kernel
Sensitivity of retrieved to true profile



Steps in Atmospheric Model Evaluation

Get observations - climate variables, Perform model simulation
atmospheric composition including diagnostic variables

Analyze and understand observations

) lexi Sample model output
(accuracy, uncertainty, complexity) V consistently with observations

Define evaluation metrics for species or process, e.g. bias,
standard deviation (variability), correlation, distribution,...

¢

Compare model output with observations

Evaluation
Metrics

Understand the cause of
errors and improve model

Match

Apply model for specific purpose for which
it has been evaluated




Approaches for Global and Regional Model Evaluation

Model Evaluation against Observations
Evaluate the capability of a model to realistically represent observed features

e Mean climatology, long-term trends and variability, extremes,...

Model-to-Model Evaluation
Evaluate the range of uncertainty inherent in model representation of different
processes

o Multi-model evaluations, benchmarking and data assimilation, regional versus global
models, community diagnostics and performance metrics,...

Process-Oriented Evaluation
Experiment and evaluation designed to focus
on a specific process

e Multi-model process-oriented, process-oriented
diagnostics,...

Figure 1 from
Young et al.
(2018)




Model vs. Observation
Evaluation of Mean Climatology

e Provides a measure of model’s skill to accurately represent the mean state
e Climatology reduces uncertainties in observations

Seasonal Cycle: Model versus Ozonesonde

Climatological Mean AOD (2000-2014) Climatology (1995-2011)

(a) Annual Mean AOD (550 nm) (AM4.0 minus AERONET)
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Model vs. Observation

ozone

Altitude, km

Altitude, km

Evaluation against Aircraft Data

Provides clues on drivers of specific model biases, if various chemical
species are co-measured

Too high anthropogenic NO, emissions
partly explain model overestimate of surface
over the Southeast U.S. SEAC*RS
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Model vs. Observation _ _ _
Evaluation against Aircraft Data

Provides clues on drivers of specific model biases, if various chemical
species are co-measured

Model overestimates methanol compared to an

Too high anthropogenic NO, emissions aircraft composite over eastern North America
partly explain model overestimate of surface because of too high biogenic emissions from
ozone over the Southeast U.S. SEAC*RS broadleaf trees and crops
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Model vs. Observation

Long-term Trends and Variability

e Evaluation against timeseries observations necessary to understand model sensitivity

e Builds confidence in projections and attributions, however consideration of

representativeness and natural climate variability is important

TOZ [63S-90S] - October

450 |
HEFCT |data ocear

o 400 . =™ . A .- .-f ) \ REFC1SD [MERRA)
- ;f» T 'Q ﬂ l' r X | Observations
a - k'Y 3 L.
o 350 - IR LN ,°8
o " 3 2
N | — .
o 300» u o "
—
E ° | ‘E’ ° 5
= 4 CESM1(WACCM) % oD
S 250 L R
< | ﬁ f:
19 ' T

200 - Thin black line ~1980 TOZ o =

' Symbols are individual realizations o
150 . 3-point smoothing for solid lines
1850 1900 1950 2000 2050 2100

Year Figure courtesy Doug Kinnison

Meteorological variability generated by free-running chemistry-climate models
(CCMs) may not capture variations seen in observations - run with meteorology
nudged to observations



Model vs. Observation

Sparse in-situ measurements and natural climate variability
complicate evaluation of model simulated trends and variability

80| | |

O3 (ppbv)
N
(@]
I

B Model Meas .
20 Jungfraujoch <& @ i
i Zugspitze A A )
Sonnblick [ |
Parrish et al. (2014) 1
0 | 1 i 1 i 1 i 1 I 1 L |
1950 1960 1970 1980 1990 2000 2010

Ozone Anomaly (ppbv)

—
o

o

o

[
(&) ]

—
o

-15

1980

3-8 km Western North America

1995-2008 (ppbyr")  1984-2014 (ppb yr)
0BS 0654032 (p<0.01)  04240.17 (p<0.01)
0BS
BASE true median 025032 (p=0.12) 0272010 (p<0.01)  r{(OBS,AMS)=0.45
- 1o\ Qﬂ
e, 208
0, Te
A 0w ‘

Lin et al. (2015)

1984 1988 1992 1996 2000 2004 2008 2012

Important to co-sample model in space and time with available observations
in addition to nudging the meteorology, spatial and temporal averaging necessary
to detect significant trends



Evaluation of Extreme Air Pollution Events

Surface Temperature and Pressure GEOS-Chem TOAR Ozone
o, f” .
o o e Evaluation of extreme events
requires clear definition of
“extreme”

e Evaluation of underlying
synoptic-scale meteorology
and local emissions
necessary for building
confidence in modeled
extremes

June 27, 2012

e Dense, high frequency,
long-term, and reliable
measurements necessary
for evaluating model skill in
representing frequency,
intensity and duration

June 28, 2012

June 29, 2012

10 14 18 22 26 30 34 38 42

Young et al. (2018)

2 meter temperature/°C MDA8 ozone /nmol mol”!




Qualitative Comparison between Models and Observations
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Ozone increase during heat waves over different cities around the globe
e Differences in absolute ozone between models and observations, but
e consistent behavior between models and observations

= Confidence in specific process



Model-to-Model Evaluation

Evaluation of Long-Term Projections

Regional Model: (12km)

Coarse resolution models tend to
overpredict surface ozone

Global Model: (2.5 deg)
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Model-to-Model Evaluation

Evaluation of Long-Term Projections

Present

Future
minus
Present

Regional Model: (12km)

Coarse resolution models tend to

overpredict surface ozone

Global Model: (2.5 deg)
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Model-to-Model Evaluation

Regional CTM
Zero-out OG emissions

40N - -
—
106W 105W 104W
I [ [ [ [ [ [

-0 8 6 -4 -2 0 2

MDA O, difference (ppbv)

4 6 8 10

Comparing models of different complexity
facilitates independent evaluation of
parameterizations or conclusions

Chemical Box model

driven by aircraft Observations
(1) Evaluate lumped chemical mechanism
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Model-to-Model Evaluation

Regional CTM
Zero-out OG emissions
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MDA O, difference (ppbv)

Comparing models of different complexity
facilitates independent evaluation of
parameterizations or conclusions

Chemical Box model

driven by aircraft Observations
(1) Evaluate lumped chemical mechanism
(2) Reduce excess concentrations for OG
species - Evaluate CTM conclusions
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Model-to-Model Evaluation

CH, Lifetime (Year)
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Benchmarking using Data Assimilation

Model simulation constrained by MOPITT CO observations

OH (10° molec.cm™3)
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Data assimilation aims to optimally integrate observations and
model simulation to improve estimates of the atmospheric state.

Can help identify shortcomings in composition and processes
and can be used as benchmark simulation



Multi-model Evaluation Differences across models can be useful

to identify common problems across models,
explore structural uncertainty, and identify errors
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Multi-model Evaluation Differences across models can be useful

to identify common problems across models,
explore structural uncertainty, and identify errors

Persistent high bias in modeled summertime
surface ozone over some regions
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Multi-model Evaluation

one (ppbv)

Surface Ozc

Differences across models can be useful
to identify common problems across models,
explore structural uncertainty, and identify errors

Persistent high bias in modeled summertime

surface ozone over some regions
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Models underestimate AOD over central Indo-
Gangetic Plains - attributed to common
problems in emissions and nitrate aerosols
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Multi-model Evaluation

ESMValTool Structure

li l Namelists
Bl — : Interface scripts
Lbraries/ tiites
Model data Diag and plot scripts
Observations Input/Output

derive_var.ncl

reformat default
reformat EMAC
reformat_obs

Calculate derived variable

Checkireformat the input
according to CFICMOR

variable_defs/ Reformat routines

HIODOVNVIN MOTINIOM

cfg XYZ/ Processed data
Output etcDF) |
Plots ps, s, png, )|

Call diagnostic scripts
different languages (typ) Log il [teferonices] |
supported: NCL, python, R
diag scripts/lib

Common libraries QE SMV alToo ]:

Performance-Based Metrics to compare
performance of single or multiple models
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Eyring et al., 2016

Obs4MIP+CCMVal = Earth System Model
Evaluation Tool (ESMValTool)



Multi-Model Process-Oriented Evaluation

Multimodel Species Burden and Budget - first order metric for intercomparisons
(e.g., Oj, CO, aerosols,..)
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Young et al. (2018)




Multi-Model Process-Oriented Evaluation

Multimodel Species Burden and Budget - first order metric for intercomparisons
(e.g., Oj, CO, aerosols,..)
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No Global-scale Observational Estimates
Consensus across models that Prod > Loss Large intermodel spread indicates
Intermodel differences related to different considerable uncertainty in dry deposition of

chemical mechanisms ozone — opportunity for improvements!



Process-oriented Evaluation Targeted evaluation of individual
processes with a single model using process-

Multi-model Ozone Dry Deposition Flux level diagnostics improves understanding

versus Obs _
2 — 2 and helps refine models
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Process-oriented Evaluation

Evaluate Basic Climatology

/{'j»\ SO4ZSummer .

R= 093NMB -0.08

0.50 0.67 1.50 2.00 Model/Obs.

But what about sensitivity?

Paulot et al. (2016)



Process-oriented Evaluation

Evaluate Basic Climatology
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Process-oriented Evaluation

Evaluate Basic Climatology
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Process-oriented Evaluation

Evaluate Basic Climatology
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Process-oriented Evaluation

d

[0,)/dT

MAY CASTNet slope (ppb K') 1988-1999

Observed relationships between trace
species and meteorology provide a test
for model processes
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Sources of Disagreement
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Modeled peak ozone
too high independent
of emission scenario
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Pfister, Flocke and Lee, FRAPPE Final Report, 2017




Sources of Disagreement

O3 (ppbv)

Modeled peak ozone
too high independent
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6 12 18 23
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Multiple Factors can Contribute to
Model-Observation Differences

e Model Inputs - emissions
e Chemistry

e Physics - Clouds, Winds, Radiation,
Boundary Layer, ...

Pfister, Flocke and Lee, FRAPPE Final Report, 2017
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What is a Good Model Performance?

e There is no single metric that captures model skill

e Choice of evaluation method(s) depends on model application and
available observational constraints

Critical assessment of the model-measurement
comparison is needed:

e How representative are the measurements and the model for the
specific time period and location?

e Is the evaluation appropriate for the purpose of the study?

e Does the model have the appropriate level of complexity for the
specific problem being addressed?

e \What is the acceptable level of model performance?



