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Two talks on transport:

Desirable properties of transport schemes

What physical properties of the continuous equation of motion are
important to respect in discretization schemes?

Discretization strategies

Eulerian and semi-Lagrangian finite-volume schemes
Galerkin schemes (focus on spectral-elements)
Practical considerations
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Until fairly recently the most widely used idealized test
case to assess transport accuracy in global models was:
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Until fairly recently the most widely used idealized test
case to assess transport accuracy in global models was:

Test 1: Solid-body advection
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GEOS-5 simulation: winds transporting aerosols (5/2005-5/2007)

In general, , sea salt blue, sulfates white, and carbon green




GEOS-5 simulation: winds transporting aerosols (5/2005-5/2007)

In general, , sea salt blue, sulfates white, and carbon green




GEOS-5 simulation: winds transporting aerosols (5/2005-5/2007)

In general, , sea salt blue, sulfates white, and carbon green

Turbulent diﬁusi on Vertical transport by deep convection

Convection is an effective way of mixing tracers in the vertical (e.g. Mahowald et al., 1995; Collins
et al., 1999), e.g., convective updrafts can transport a tracer from the surface to the upper tropo-
sphere on time scales of O(1h).

Given vertical profile of eddy diffusion coefficient K(p):
22 k]
ot ap op

Contrary to convective tracer transport turbulent diffusion is a local process!

environ.
subsidence




The most important continuity equation in modeling

Accurate to
Consider the continuity equation for dry air approximately
0.01hPa globally
0pd
5 TV (pav) =0, (1)

where py is the density of dry air (mass per unit volume of Earth's
atmosphere) and v is a 3D velocity vector.




The most important continuity equation in modeling

Consider the continuity equation for dry air
—— *+ V- (pgv) =0, (1)

where py is the density of dry air (mass per unit volume of Earth's
atmosphere) and v is a 3D velocity vector.

/Note that the continuity equation for air is “tightly” coupled with

momentum and thermodynamic equations

\To solve (1) we need to know the velocity field!
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Water substance X, where X = v, ¢/, ci (water vapor, cloud liquid
and cloud ice), is represented with mixing ratio variable:

= PX
Mx = Pd’

where py4 is the mass of dry air per volume of moist air.

» myx Is mixing ratio of water substance of type X with respect
to dry air (not moist air!)

» The mass of moist air in a unit volume, including all water
substances, is simply the sum of the individual components

P =pd+ Pyt pot+ pei = pg(l+my, +mg+mg).

» Some models (and/or parameterizations) use specific

humidities
PX

dx = 0
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The budget equation for water substance X is

0 m
57 (mypg) + V- (mxpgv) =pg S, (2)

m .
where S is source of water substance X.

/ \ The Water Cycle

Water variable sources/sinks:

- Changes of state

+ Precipitation formation (and

* evaporation)

« Unresolved transports by
turbulence and convection

e Surface fluxes

o /
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Conservation of mass

Consider the continuity equation for X (e.g., water vapor, cloud
ice, cloud liquid, chemical species, ...)

0 m
P (mypg) +V - (mxpgv) =pg S, (1)

where S is the source of X and/or sub-grid-scale transport term.

Integrate (1) over entire atmosphere €2;.;

O oo fff, nismov
Ot Qo Qior

Note: sub-grid-scale transport integrates to zero! Global mass only
changes due to sources/sinks S"'¥.
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Global conservation of mass

4 N

Globally the change in mass is exactly balanced by the source/sink terms!

The resolved-scale tracer transport must not be a spurious source or sink of mass

K Why is that a problem? /

Integrate (1) over entire atmosphere €2;.;

O oo fff, nismov
Ot Qo Qior

Note: sub-grid-scale transport integrates to zero! Global mass only
changes due to sources/sinks S"'¥.
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Accumulation of error

Relative dry mass change: [M(t)-M(t=0)]/M(t=0)

O HIH T T T T ! ! ! ! !

-2x1071° HHH- .
-4x10715 HH- -
-6x1071% - - .
-8x1071% - HHH- .
110714 HH- -
-1.2x10714 HH -
-1.4x10714 + +HHH- -
-1.6x10714 - HHH- -

-1.8x10714 - +H 7

_2X10-14 ! ! ! ! ! ! | | |

1000 year simulation = O(107) 30 minute time-steps

NCAR | National Center for Atmospheric Research

UCAR | Climate & Global Dynamics



Ad hoc mass fixers are inherently problematic

Assume there has been a mass loss

longitude
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Ad hoc mass fixers are inherently problematic

Global mean
mass restoration

longitude
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Ad hoc mass fixers are inherently problematic

X
Spurious Global mean
long-range .
transport mass restoration

longitude

NCAR | Na

tional Center for Atmospheric Researct
UCAR | Climate & Global Dynamics



Ad hoc mass fixers are inherently problematic

longitude
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Ad hoc mass fixers are inherently problematic

Ad hoc “local”
mass restoration

longitude
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Ad hoc mass fixers are inherently problematic

Ad hoc “local”
mass restoration

longitude
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Ad hoc mass fixers are inherently problematic

m,
T S ———
Ad hoc “local”
mass restoration
0

longitude
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Inherent local mass-conservation is desirable

Eulerian version:

Q stays fixed
in local coordinate system

» The continuity equation is a conservation law for mass:

%///Q padV == [l[o V- (pav) dV,

= _9#39 (pgv) - ndS,

where €2 is a fixed volume, 0f2 the surface of 2 and n is
outward pointing unit vector normal to the local surface.
= The flux of mass through the area da is da times pyv - n.

eric Research
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Inherent local mass-conservation is desirable

Lagrangian version:

Q moves with the flow

» The continuity equation is a conservation law for mass:

& o =i

- 4

dv,

Pd ndsa

where €2 is a fixed volume, 0f2 the surface of 2 and n is
outward pointing unit vector normal to the local surface.
= The flux of mass through the area da is da times pyv - n.
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Conservation of my along parcel trajectories

Consider the continuity equation for dry air and X

)

—;td + V- (pgv) =0, (2)
0 m
o (Mmypg) + V- (mxpav) =pa S, (3)

respectively. Applying the chain rule to (3), re-arranging and
substituting (2) implies

— ¢mMx
=5,

where D /Dt = % + vV is the total (material) derivative.
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Conservation of my along parcel trajectories

Consider the continuity equation for dry air and X

% + v If the discretization scheme is )

ot based on the advective form of
0 (mypy) + V- the continuity equation (.e.g, )
ot grid-point semi-Lagrangian

schemes) then inherent mass-

respectively. Applying the chaii . .
substituting (2) implies F

— 2 =g

where D /Dt = % + vV is the total (material) derivative.

NCA
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Conservation of my along parcel trajectories

(if no sources/sinks of m,)

Eddyand paritles alter 0 days
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e if m(x,y,t=0)=constant then m (x,y,t)=constant

« MIN[m, (x,y,t=0)] < m,(x,y,t) < MAX[m,(x,y,t=0)]

Source: https://www.youtube.com/watch?v=tEHQH7Uly-8
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Conservation of my along parcel trajectories
(if no sources/sinks of m,)
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Conservation of my along parcel trajectories

Atmospheric modelers tend to be a bit loose with the term "'monotone’!

When modelers refer to “non-oscillatory”, “shape-preserving”, “physical realizable”

or “monotone” they usually refer to the monotonicity property as defined by
Harten (1983):

1. No new local extrema in m, may be created
2. The value of a local minima/(maxima) is nondecreasing/(nonincreasing)

There are “stricter” characterizations such as total variation diminishing (TVD),
however, they are probably too strong for our applications

Less strict: positive-definite (scheme does not produce negatives)

=> the monotonicity property applies to mixing
ratio m, and not tracer mass!

NCAR | National Center for Atmospheric Research
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Why is the monotonicity property so important

1.2
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Why is the monotonicity property so important

1.2 [ i
: , : |
" "\' '/\-
! i \ * Over- and undershoots can
l : .
Spurious oscillations i ! lead to unphysical values
within the physical ; |_ (negative mixing ratio or
realizable range of values i ! mixing ratio > 1)
can trigger irreversible I . ) §
diabatic processes | « Ifwe Ighore (“chop”) the
(e.g., phase-changes, ! : unphysical valu.es Wecllq;)se
chemical reactions) ! i mass conservation and i
! i the tracer is humidity it
! " would impact energy
-~ va conservation
o2
—1.0 —0.5 0.0 0.9 1.0

Nair et al., (2011)
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Conservation of mass along parcel trajectories

Note that
but

If we integrate py over a Lagrangian volume 2, then

0
a///Qch,dv_o.

National Center for Atmospheric Research

NCAR ; eseard
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Lagrangian volumes are rapidly distorting

¢ \\/1/

Fig. 2: In the highly nonlinear flows that characterize fluid motion in the atmosphere and ocean,
Lagrangian control volumes are rapidly distorted due the presence of strong shear, rotation and
dilation. The rapid distortion of Lagrangian control volumes makes the formulation of numerical
models within the Lagrangian reference frame an extremely difficult challenge.

Ringler (2011)
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Filament diagnostic m.ruater uo

/2

(b) ¢ (t=0), cosine bells

o n/2 n /2 2

/8

(b) ¢ (t=T/2), cosine bells

¢ /e al an/R 2

The “filament” preservation diaghostic is formulated as follows. Define A(1,t) as the
spherical area for which the spatial distribution of the tracer ¢(1,0) satisfies

P(1.0) =1, (27)

at time £, where 7 is the threshold value. For a non-divergent flow field and a passive
and inert tracer ¢, the area A(7,t) is invariant in time.
The discrete definition of A(7,f) is

AT t)= D DA, (28)
keg

where AA, is the spherical area for which ¢, is representative, K is the number of grid

cells, and G is the set of indices

G={ke(1,...K)|®, =1} (29)

For Eulerian finite-volume schemes AA, is the area of the k-th control volume. For
Eulerian grid-point schemes a control volume for which the grid-point value is rep-
resentative must be defined. Similarly for fully Lagrangian schemes based on point
values (parcels) control volumes for which the point values are representative must
be defined. Note that the “control volumes” should span the entire domain without
overlaps or “cracks” between them.

Define the filament preservation diagnostic

A(tt) . _
&(1,t) = { 100.0x A(7,t=0) if A(7,t=0)#0,

. (30)
0.0, otherwise.

For infinite resolution (continuous case) and a non-divergent flow, &(z,t) is invariant
in time: &(1,t =0) = &(7,t) =100 for all 7. At finite resolution, however, the filament

This diagnostic does not rely on an analytical solution!

Lauritzen et al. (2012)
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Filament diagnostic

(a) 1%-order CSLAM (b) 3"%-order CSLAM
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Fig. 6. Filament diagnostics ¢ (t =T'/2) as a function of threshold value 7 for different configurations of the CSLAM scheme with Courant
number 5.5. (a) 1°t-order version of CSLAM at A\ = 1.5° and A\ = 0.75°, and (b) 3"%-order version of CSLAM with and without
monotone/shape-preserving filter at resolutions A\ =1.5° and AX=0.75°.
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Tracer mass and air mass consistency

Consider the continuity equation for dry air and X (no
sources/sinks)

o

—2+V-(pgv) =0, (4)
0
E(mxpd)JrV‘(mxpdV) =0, (5)

respectively.

Ni)te that if m, is 1 then (5) reduces to (4)}
|

A scheme satisfying this is referred to as “free-stream preserving”

NCAR ’ National Center for Atmospheric Research
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Examples of tracer mass and air mass consistency violation

Consider the continuity equation for dry air and X (no

Prescribed wind and mass

—— +V-(pgv) =0, (4)

respectively.

N{)te that if m, is 1 then (5) reduces to (4)}
!

A scheme satisfying this is referred to as “free-stream preserving”

NCAR | Na
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Examples of tracer mass and air mass consistency violation

Consider the continuity equation for dry air and X (no
sources/sinks)

UCAR | Climate & Global Dynamics



Examples of tracer mass and air mass consistency violation

Assume we are solving (4) and (5) with the same finite-volume method:

(5) can be solved with a longer time-step than (4) — “free-stream preservation” can
relatively easily be enforced.

o

—2+V-(pgv) =0, (4)
0
E(mxpd)JrV'(mx,OdV) =0, (5)

respectively.

Ni)te that if m, is 1 then (5) reduces to (4)}
|

A scheme satisfying this is referred to as “free-stream preserving”

NCAR | National Center for Atm
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Correlations between long-lived species in the stratosphere

Relationships between long-lived stratospheric tracers, manifested in similar spatial structures on
scales ranging from a few to several thousand kilometers, are displayed most strikingly if the mixing
ratio of one is plotted against another, when the data collapse onto remarkably compact curves. -

Plumb (2007)

E.g., nitrous oxide (Np O) against ‘total odd nitrogen’ (NO, ) or chlorofluorocarbon (CFC'’s)

300 1

200

CFC-11 (pptv)

100 1

Flgures from Plumb (2007).
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Correlations between long-lived species in the stratosphere

Relationships between long-lived stratospheric tracers, manifested in similar spatial structures on
scales ranging from a few to several thousand kilometers, are displayed most strikingly if the mixing
ratio of one is plotted against another, when the data collapse onto remarkably compact curves. -
Plumb (2007)

E.g., nitrous oxide (Np O) against ‘total odd nitrogen’ (NO), ) or chlorofluorocarbon (CFC's)

Similarly:

@ The total of chemical species within some chemical family may be preserved following an air
parcel although the individual species have a complicated relation to each other and may be
transformed into each other through chemical reactions (e.g., total chlorine)

@ Aerosol-cloud interactions (Ovtchinnikov and Easter, 2009)

The transport operator should ideally not perturb pre-existing functional relationships
¢ e
J Z
A - 4
®
J aa

o ° CFC-11 7
°® A% - 2

a

&
ZN

CFC-11

100 1

200 300
N,O (ppbv)

Figures from Plumb (2007).
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Analyzing scatter plots

g( max)

<tvmin

Ix(mt'n) x Xl(max)
Analytical pre-existing functional relationship curve 1 (linear)

E=v(x)=a - x+b xE€ [x("’"”), x(’”"x)} ,

where a and b are constants, and x and £ are the mixing ratios of the two tracers

NCAR | National Center for Atmospheric Research
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Analyzing scatter plots

&(max)

E-: min

] ]
Ix( min) X XI( max)

Analytical pre-existing functional relationship curve v (linear)

x and & are transported separately by the transport scheme

ittt = T,  Jen,
&Yt o= T, JeH,

where T is the transport operator and H the set of indices defining the ‘halo’ for 7.

NCAR | National Center for Atmospheric Research
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Analyzing scatter plots

gl

gmin

x( min) X x( max)

Analytical pre-existing functional relationship curve v (linear)

If 7 is ‘semi-linear’ then linear pre-existing functional relations are preserved:
€ = T(&]) = T(ax] + b) = aT(x]) + bT(1) = aT(x]) + b= axj** + b

— If transport operator is non-linear the relationship might be violated.

NCAR | National Center for Atmospheric Research
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Analyzing scatter plots

N20 vs. NOy 12 Jon 1989

"%\ OBSERVATIONS

S ’ \

NOY vs N20 1/12/89, 52 to 84 N, 91 — 30 mb

16 NOY VS N20 1/12/89, 52 1o 84 N, 91 - 30 b 16,
e ;! o[ N Van Leer Method
‘ ¥ Spectral Method o
g e (widens over time) r '
101 s 10
- 8L 8
H a .
6 = 6L
4L
SPECTRAL MODEL __."’.I.
2t T w‘fi"’ﬁi:‘r,",(, PY IR
ITH FORESTER's FILTER A VAN LEER
4] 1 1
50 u;o . 150 21‘30 250 3(‘;0 ¢} L 1 1 L )
50 100 150 200 X 250 300

N20 ppbv

Figures from R.Rood’s talk at the 2008 NCAR ASP colloquium

Analytical pre-existing functional relationship curve v (linear)

— carefully designed finite-volume schemes are ‘semi-linear’ even with limiters /filters!
(Thuburn and Mclntyre, 1997; Lin and Rood, 1996)
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The terminator ‘toy’-chemistry test: A simple tool to

assess errors in transport schemes )

(Lauritzen et al., 2015) ” N

See: http://www.cgd.ucar.edu/cms/pel/terminator.html THE TERMINATOR
TEST

Terminator reaction coefficient: k(A ,0)

Consider 2 reactive chemical species, Cl and Cl, :

Cl, =CI+Cl:k
Cl+Cl—CL :k,

Steady-state solution (no flow):

90°W 0° 90°E

2.5e-07 1.25e-06 2.25e-06 3.25e-06 2e-07 6e-07 1e-06  1.4e-06 1.8e-06

In any flow-field Cl,=Cl+2*Cl, should be constant at all times
(correlation preservation)

National Center for Atmospheric Research NCAR | National Center for Atmosph Res

esearch
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http://www.cgd.ucar.edu/cms/pel/terminator.html

The terminator ‘toy’-chemistry test: A simple tool to

assess errors in transport schemes Ak ey
(Lauritzen et al., 2015) /&r’t N
See: http://www.cgd.ucar.edu/cms/pel/terminator.html THE TERMINA&()R

TEST

Terminator reaction coefficient: k(A ,0)

« Consider 2 reactive chemical species, Cl and Cl, :

Cl, =Cl+Cl:k,
Cl+Cl —Cl, :k,

® 90°N 90°N
4.10e-6
4.01e-6 2;2,‘32_2
45°N 3.99e-6 45Ny 3.99e-6
3.90e-6 3.90e-6
3.00e-6 3.00e-6
0° 2.00e-6 o 2.00e-6
1.00e-6 1.00e-6
0.10e-6 0.10e-6
45° 0.01e-6 S 0.01e-6
-0.01e-6 -0.01e-6
-0.10e-6 -0.10e-6
90°s 1 1 | 90°s
Lo i e S0°E 180° 180° 90°W 0 90°E 180°
Day 00 Day 00

* In any flow-field Cl,=Cl+2*Cl, should be constant at all times
(linear correlation preservation).

National Center for Atmospheric Research NCAR | National Center for Atmospheric Research
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http://www.cgd.ucar.edu/cms/pel/terminator.html

The terminator ‘toy’-chemistry test: A simple tool to

assess errors in transport schemes

(Lauritzen et al., 2015)

L] 4 c
See: http://www.cgd.ucar.edu/cms/pel/terminator.html THE TERL\IINA/L‘()R
TEST

N

CAM-SE

5.00e-6
4.30e-6
4.10e-6
4.03e-6
4.01e-6
3.99¢-6
3.97e-6
3.90e-6
3.70e-6
3.00e-6

180° 90°W 0° 90°E 180°

Day 00

CAM-FV (Lin 2004)

45°N

0°
45°S
90°S

90°W

Day 00

5.00e-6
4.30e-6
4.10e-6
4.03e-6
4.01e-6
3.99e-6
3.97e-6
3.90e-6
3.70e-6
3.00e-6

* Inany flow-field Cl,=Cl+2*Cl, should be constant at all times (correlation preservation).

E Scientific Discovery through National Center for Atmospheric Research NCAR | National Center for
9 Advanced Computing Atmospheric Chemistry Observations & Modeling il UCAR | Climate & Global Dynarmcs



http://www.cgd.ucar.edu/cms/pel/terminator.html

Conserving sum of “families” of species

Chlorine (in CAM-chemistry)

Total Organic Chlorine (set at the surface)

TERE = CH3Cl+3CF Cl3+2CF, Cly+3CL CLoFC CLFo+HCF, CL+4CCl,+3CH3C Cls.

Total Inorganic Chlorine (created from break down of TERC

TEYORS = CL+ CLO+0CLO +2Cl +2Cl O, + HO Cl+ CLONO, + HCL,

Total Chlorine
TCLY = TORG _I_TINORG

Total chlorine TCLY should be conserved in the upper troposphere and stratosphere
(despite complex chemical reactions between the different chlorine species)!

Reactants Products Rate

PAN + M — CH3CO3+NO2+M k(CH3CO3+NO2+M)-1.111E28
-exp(~14 000/T)

CH3CO3 + CH3CO3 —  2.CH302 +2-{CO2} 2.50E-12-exp(500/T)

GLYALD + OH — HO2 + 2-GLYOXAL + .8-CH20 + .8-{CO2} 1.00E-11

GLYOXAL + OH — HO2 + CO + {CO2} 1.10E-11

CH3COOH + OH — CH302 + {CO2} + H20 7.00E-13

C2H50H + OH —  HO2 + CH3CHO 6.90E-12-exp(-230/T)

C3H6 + OH + M — PO2+M ko=8.00E-27-(300/T)3-9;

ki=3.00E-11; {=0.50

UCAR Ci|mate & Global Dynarmcs



Conservmg sum of “famllles” of species

TCLY [mol/mol], ca. 892.55608 hPa, lo TCLY [mol/mol], ca. 35923249 hPa, lof

s]

[degree:

Latitude

(left) longitude-averaged surface TCLY as a function of time and latitude: Constant!
(right) same as (left) but near tropopause: Spurious 7% deviations (near sharp gradients)!

Problem?

Transport scheme can not maintain the sum when transporting the species individually:

N Nx “Semi-linear” property is a
D T AT xif.
i=1 i=1

where N, is the number of species ¥;.

NCA Atmospheric Re

UCAR Cllmate & Global Dynarmcs



Conserving sum of “families” of species

TCLY [mol/mol], ca. 35.923249 hPa, lon average TCLY [mol/mol], ca. 35.923249 hPa, lon average

50 50

3.50e-09

<

3.45e—09

Latitude [degrees]
)
Latitude [degrees]

3.40e-09

3.35e—09

3.30e—09

—50 —50

3.25e-09

3.20e—09

3.15e-09

Mar Mcéy Jul Se; Nov Jan Mar Mo Jul Se| Nov Jan
1983 1998 1998 1998 1998 19839 1983 199yﬁ 1998 'IEI;B 1998 1998

(left) same as previous slide:

@ large unphysical deviations from constancy in TCLY near the edge of the polar
stratospheric vortex = less TCLY over South pole = less ozone loss (error on the
order of 10%).

(right) same as (left) but using a fixer:
@ (i) transport the individual species
e (ii) transport the total

@ in each grid cell scale the individual species by the difference between (i) and (ii)

NCAR

UCAR | Climate & Global Dynamics



Simple idealized “family of species” test

(a) x (t=0), slotted-cylinders (b) & (t=0), displaced slotted-cylinders (c) € (t=0), residual
n/2 0 0 0 /2 0 0 0 /2 L L L
0 0 0 - ﬂ‘J : ‘ :i :
/2 /2 n/2 T T T
0 n/2 w 3m/2 om 0 n/2 L 3m/2 om 0 n/2 ” 3m/2 om
(d) % (t=T/2), CSLAM with filter (e) € (t=T/2), CSLAM with filter C (t=T/2), CSLAM with fllter
n/2 i i i i i i /2
0 0 - ; E ) ( g ?
-n/2 -n/2
0 n/2 L /2 om 0 n/2 L 3n/2 om 0 °m

01 02 03 04 05 06 0.7 08 0.9 1
sum: y (t=t/2)+& (t=T/2)+L (t=T/2)

This test does not rely

Lauritzen and
Thuburn (2010)



Analyzing scatter plots

S max)

g{ min

| | N
| ! 7~
X(min) x x(max)
Analytical pre-existing functional relationship curve 9

E=vy(x)=a x°+b,

where a and b are constants so that v is concave or convex in [X(mi”), X(max)]

NCAR | National Center for Atmospheric Research

UCAR | Climate & Global Dynamics



Analyzing scatter plots

g( max)

gmin

] ] N
Ix(min) x xl(max) -
Discrete pre-existing functional relation (initial condition)

gk:w(Xk):a'(Xk)2+b7 k:]-a"aK7

where a and b are constants so that 1) is concave or convex in [X(mi”), X(max)]

NCAR | National Center for Atmospheric Research
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Analyzing scatter plots

g( max)

gmin

] ] N
Ix(min) x xl(max) -
Discrete pre-existing functional relation (initial condition)

gk:w(Xk):a'(Xk)2+b7 k:]-a"aK7

where a and b are constants so that 1) is concave or convex in [X(mi”), X(max)]

NCAR | National Center for Atmospheric Research
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Analyzing scatter plots

—

[ ] XJp+1

A fully Lagrangian model will maintain pre-existing functional relation

1 1
iU =Xk T =&

following parcel trajectories (without ‘contour-surgery’ or other mixing mechanisms)

NCAR | National Center for Atmospher esearch
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Analyzing scatter plots

N @

gmin

| | ~
I (min) I (max) -
X X X

Any Eulerian/semi-Lagrangian scheme will disrupt pre-existing functional relation

g =T #£aT(x) +b jeH

where T is the transport operator and 7 the set of indices defining the ‘halo’ for 7.

UCAR | Climate & Global Dynamics



‘Real’ mixing, e.g., observed during polar vortex breakup
(Waugh et al., 1997)

&(max)

g(min

| | ~
I (min) I (max) -
X X X

‘Real mixing’ (when occurring) will tend to replace the functional relation by a scatter by linearly
interpolating along mixing lines between pairs of points

NCAR | National Center for Atmospheric Research
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‘Real’ mixing, e.g., observed during polar vortex breakup
A

g(max)

gmin

| | ~
I (min) I (max) -
X X X

‘Real mixing' (when occurring) will tend to replace the functional relation by a scatter by linearly
interpolating along mixing lines between pairs of points
— ldeally numerical mixing should = ‘real mixing’!

However, it may be shown mathematically that schemes that exclusively introduce ‘real
mixing' are 1%'-order schemes (Thuburn and Mclntyre, 1997).

NCAR | National Center for Atmospheric Research
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Classification of numerical mixing on scatter plots

overshooting

3UN0OYSIIA0

i( min

] ]
Ix( min) X xl( max)

re from (Lauritzen and Thuburn, 2012)
for Atmospheric Research

Figu
NCAR | National Center

t At
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Preserving pre-existing functional relation between
tracers under challenging flow conditions

First-order scheme: only "real mixing’

1

Tracer density simulated with monotone CSLAM

w/2

Nair and Lauritzen (2010) flow field | T

NCAR

UCAR | Climate & Global Dynamics




Preserving pre-existing functional relation between
tracers under challenging flow conditions

Note: 1. Max value decrease, 2. Unmixing even if scheme is
shape-preserving, 3. No expanding range unmixing

1 1 I I I 1
Tracer density simulated with monotone CSLAM
w/2 I
08
0 ..........................................
06 |
-n/2
4 /2 m an/2 2
Tracer density simulated with monotone CSLAM
e ] : 0al
0
02
/2
0 w/2 n 3n/2 2m
0
0

0.1 0.15 02 025 03 0.35 04 045 0.5 055 0.6 065 0.7 0.75 0.8 085 09 095 1
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Preserving pre-existing functional relation between
tracers under challenging flow conditions

Note: 1. Max value decrease, 2. Unmixing even if scheme is
shape-preserving, 3. No expanding range unmixing

1 I I I 1
Tracer density simulated with monotone CSLAM
w/2 I
08 -
0 ..........................................
06 | —
-n/2
4 /2 m an/2 2
Tracer density simulated with monotone CSLAM
K ' 04| -
0
02 -
/2
0 w/2 w 3n/2 2m
0 1 1 1 1 1
0 0.2 0.4 08 0.8 1

0.1 0.15 02 025 03 035 04 045 05 055 06 065 0.7 075 0.8 085 09 095 1

NCAR
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Preserving pre-existing functional relation between
tracers under challenging flow conditions

Note: 1. Max value decrease, 2. Unmixing even if scheme is shape-
preserving, 3. No expanding range unmixing

1 1 I I I I
Tracer density simulated with monotone CSLAM
w/2 L I
08 -
0 ..........................................
06 | —
-n/2
4 /2 m an/2 2
Tracer density simulated with monotone CSLAM
e ] : 0al -
0
02 -
/2
0 w/2 w 3n/2 2m
0 1 1 1 1 1
0 0.2 0.4 08 0.8 1

0.1 0.15 02 025 03 0.35 04 045 0.5 055 0.6 065 0.7 0.75 0.8 085 09 095 1
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Summary

What physical properties of the continuous equation of
motion are important to respect in discretization schemes?

* Global mass-conservation
* Local mass-conservation (fixers are inherently “bad”)
* Mixing ratio conservation along parcel trajectories
 Shape-preservation is important
* Preserving pre-existing relationships between species
- linear correlation preservation between 2 species
- preserving sum of species (>2)
- quadratic correlation preservation between 2 species



More information: http://www.cqd.ucar.edu/cms/pel
Email: pel@ucar edu
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http://www.cgd.ucar.edu/cms/pel
mailto:pel@ucar.edu

Physics dynamics coupling methods

Advance dynamics core (30 minutes)

\\

Compute physics
tendencies based
on dynamics
updated state

b Update dynamics state with
physics tendencies

NCAR | \a

UCAR | CI



Physics dynamics coupling methods

K Advance dynamics core (30 minutes)

For long physics time-steps and less diffusive
dynamical cores this can create spurious noise!

Compute physics
tendencies based
on dynamics
updated state

Noise can be detected by computing

Ly
dt Ps

E— Update dynamics state with
physics tendencies

NCAR | National Center for Atmospheric Research

UCAR | Cli



Physics dynamics coupling methods

d
10 year average of _ |p;| from AMIP run

Absolute surface pressure tendency Pa/s

90N

60N

30N

30S

60S

90S
0 30E 60E 90E 120E 150E 180 150W 120W 90W 60W  30W 0

8e-05 0.00016 0.00024 0.00032 0.0004 0.00048

NCAR
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Physics dynamics coupling methods

Advance dynamics core (30 minutes):
add physics tendency “chunks”
during the dynamics time-stepping

- every 15 minutes in this example

(I refer to it as “dribbling”)

\\

Compute physics
tendencies based
on dynamics
updated state

E— Split physics tendencies into
a number of “chunks”

NCAR nal Center for Atmospheric Research

UCAR Cl|mate & Global Dynam|cs



Physics dynamics coupling methods

d
10 year average of Elpsl from AMIP run

“Dribbling” physics tendencies State updated every 30 minutes

Absolute surface pressure tendency Pa/s Absolute surface pressure tendency Pa/s
90N 90N

60N 60N

30N 30N
30S

308

60S 60S

90S 90S

0 30E 60E 90E 120E 150E 180 150W 120W 90W 60W 30W 0 0 30E 60E 90E 120E 150E 180 150W 120W 90W 60W  30W 0

4e-05 6e-05 8e-05 0.0001 0.00012 0.00014 0.00016 0.00018 8e-05  0.00016 0.00024 0.00032 0.0004 0.00048

eric f >ar
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Physics-dynamics coupling: state update

Arrows show physics
tendencies based on
dynamics updated

state
Dynamics Tendencies are usually designed
updated not to drive a tracer field negative
state or produce unphysical overshoots

longitude




Physics-dynamics coupling: state update

longitude

NCAR
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Physics-dynamics coupling: “dribbling” tendencies

Black curve is solution without
physics tendencies

longitude

NCAR | National Center for Atmospheric Research
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Physics-dynamics coupling: “dribbling” tendencies

longitude
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Physics-dynamics coupling: “dribbling” tendencies

ngitude
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Physics-dynamics coupling: “dribbling” tendencies

longitude
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Physics-dynamics coupling: “dribbling” tendencies

If your model prevents the forcing in
driving the mixing ratio negative in
physics-dynamics coupling then there
will be a spurious source of mass

Note: it is always a source! (biased)

longitude
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