
Two talks on transport:

1. Desirable properties of transport schemes

What physical properties of the continuous equation of motion  are 
important to respect in discretization schemes? 

2. Discretization strategies 

Eulerian and semi-Lagrangian finite-volume schemes
Galerkin schemes (focus on spectral-elements)
Practical considerations



Until fairly recently the most widely used idealized test 
case to assess transport accuracy in global models was:

Test 1: Solid-body
advection

of order 2Ng þ 1. Table 4 shows the error norms using 2–5 point Gaussian quadrature and clearly shows that two-point
Gaussian quadrature is sufficient in terms of accuracy (similar results were obtained for the other test cases). Hence we will

(b)(a)

Fig. 14. Numerical solution at 1.875! resolution at the equator ðNc ¼ 48Þ for the solid-body advection of a cosine hill with radius Rc ¼ R=3 and amplitude
w0 ¼ 1000 after one full revolution completed in 576 time-steps of 1800 s each. (a) and (b) show the solution without and with the application of a
monotone limiter, respectively. The flow is oriented with u ¼ p=4 so that the cosine hill passes over the edges of the cubed-sphere. These settings are
identical to those used in [38].
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Fig. 15. (a–c) Normalized error norms l1; l2 and l1 , respectively, as a function of resolution for the solid body advection of a cosine hill
ðRc ¼ R=3;w0 ¼ 1000;u ¼ p=4Þ after one full revolution completed using the non-monotone scheme with at time-step of 1800 s (triangles) and 4050 s
(unfilled squares) as well as the monotone scheme with Dt ¼ 1800 s. The solid line below the other error norm curves is a reference line with slope
corresponding to the average convergence rate. (d) shows the initial condition (cosine hill in center of panel) and the exact solution after 44 h (cosine hile
over inscribed cube edge).
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Test 1: Solid-body advection

Until fairly recently the most widely used idealized test 
case to assess transport accuracy in global models was:
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GEOS-5 simulation: winds transporting aerosols (5/2005-5/2007)
In general, dust appears in shades of orange, sea salt blue, sulfates white, and carbon green
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GEOS-5 simulation: winds transporting aerosols (5/2005-5/2007)
In general, dust appears in shades of orange, sea salt blue, sulfates white, and carbon green

Deep convection scheme - schematic
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Peter Hjort Lauritzen and Julio Bacmeister (NCAR) Resolved and sub-grid-scale transport in CAM5-FV July 11, 2012 16 / 23

Deep convective tracer transport

Convection is an e↵ective way of mixing tracers in the vertical (e.g. Mahowald et al., 1995; Collins
et al., 1999), e.g., convective updrafts can transport a tracer from the surface to the upper tropo-
sphere on time scales of O(1h).

Steady state continuity equation for ‘bulk’ updraft mixing ratio 'u

@ (Mu'u)

@p
= Eu'e � Du'u (8)

where

Mu is mass-flux at layer interfaces

'e mixing ratio of environment
(in CAM: 'e = '; i.e. we assume that area of updraft <<
grid cell area)

Eu and Du are entrainment/detraiment rates for the updrafts.

Solve (8) for 'u
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Vertical transport by deep convection

Turbulent di↵usion

Given vertical profile of eddy di↵usion coe�cient K(p):

@'

@t
=

@

@p


K(p)

@'

@p

�
(10)

Contrary to convective tracer transport turbulent di↵usion is a local process!

t=0 t=T

Peter Hjort Lauritzen and Julio Bacmeister (NCAR) Resolved and sub-grid-scale transport in CAM5-FV July 11, 2012 21 / 23

Turbulent diffusion



The most important continuity equation in modeling

Consider the continuity equation for dry air

@⇢d
@t

+   � (⇢dv) = 0, (1)

where ⇢d is the density of dry air (mass per unit volume of Earth’s
atmosphere) and v is a 3D velocity vector.

Z The continuity equation is a conservation law for mass:

@
@t

A
⌦
⇢ddV = �@⌦   � (⇢dv) dV ,

= �T@⌦ (⇢dv) � n dS ,
where ⌦ is a fixed volume, @⌦ the surface of ⌦ and n is
outward pointing unit vector normal to the local surface.
� The flux of mass through the area da is da times ⇢dv � n.

Dry air makes up 99.75% of the mass of the atmosphere:

mean mass of dry air = 5.1352 ± 0.0003 x 1018 kg 

mean mass of atmosphere = 5.1480 x 1018 kg 

Trenberth and Smith (2005) 

Accurate to 
approximately 

0.01hPa globally



Consider the continuity equation for dry air

@⇢d
@t

+   � (⇢dv) = 0, (1)

where ⇢d is the density of dry air (mass per unit volume of Earth’s
atmosphere) and v is a 3D velocity vector.

Z The continuity equation is a conservation law for mass:

@
@t

A
⌦
⇢ddV = �@⌦   � (⇢dv) dV ,

= �T@⌦ (⇢dv) � n dS ,
where ⌦ is a fixed volume, @⌦ the surface of ⌦ and n is
outward pointing unit vector normal to the local surface.
� The flux of mass through the area da is da times ⇢dv � n.

The most important continuity equation in modeling

Note that the continuity equation for air is “tightly” coupled with 
momentum and thermodynamic equations

To solve (1) we need to know the velocity field!



Water substance X , where X = v , cl , ci (water vapor, cloud liquid
and cloud ice), is represented with mixing ratio variable:

mX � ⇢X
⇢d

,

where ⇢d is the mass of dry air per volume of moist air.

Z mX is mixing ratio of water substance of type X with respect
to dry air (not moist air!)

Z The mass of moist air in a unit volume, including all water
substances, is simply the sum of the individual components

⇢ = ⇢d + ⇢v + ⇢cl + ⇢ci = ⇢d (1 +mv +mcl +mci ) .
Z Some models (and/or parameterizations) used specific

humidities
qX = ⇢X

⇢ .



The budget equation for water substance X is

@
@t

(mx⇢d ) +   � (mX⇢dv) = ⇢d S
mX , (2)

where SmX is source of water substance X .

Water variable sources/sinks: 

• Changes of state
• Precipitation formation (and
• evaporation)
• Unresolved transports by 

turbulence and convection
• Surface fluxes



Consider the continuity equation for X (e.g., water vapor, cloud
ice, cloud liquid, chemical species, ...)

@
@t

(mx⇢d ) +   � (mX⇢dv) = ⇢d S
mX , (1)

where SmX is the source of X and/or sub-grid-scale transport term.

Integrate (1) over entire atmosphere ⌦tot

@
@t

A
⌦tot

(mx⇢d ) dV = A
⌦tot

⇢d S
mX dV .

Note: sub-grid-scale transport integrates to zero! Global mass only
changes due to sources/sinks SmX .

Conservation of mass



Consider the continuity equation for X (e.g., water vapor, cloud
ice, cloud liquid, chemical species, ...)

@
@t

(mx⇢d ) +   � (mX⇢dv) = ⇢d S
mX , (1)

where SmX is the source of X and/or sub-grid-scale transport term.

Integrate (1) over entire atmosphere ⌦tot

@
@t

A
⌦tot

(mx⇢d ) dV = A
⌦tot

⇢d S
mX dV .

Note: sub-grid-scale transport integrates to zero! Global mass only
changes due to sources/sinks SmX .

Global conservation of mass

Globally the change in mass is exactly balanced by the source/sink terms!

The resolved-scale tracer transport must not be a spurious source or sink of mass

Why is that a problem?



Accumulation of error
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Relative dry mass change: [M(t)-M(t=0)]/M(t=0)

1000 year simulation ≈ O(107) 30 minute time-steps



Ad hoc mass fixers are inherently problematic

mx

longitude
0
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Assume there has been a mass loss
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Spurious 
long-range  
transport

Unphysical 
overshoot
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Ad hoc mass fixers are inherently problematic
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Gradients 
are changed



Consider the continuity equation for dry air

@⇢d
@t

+   � (⇢dv) = 0, (1)

where ⇢d is the density of dry air (mass per unit volume of Earth’s
atmosphere) and v is a 3D velocity vector.

Z The continuity equation is a conservation law for mass:

@
@t

A
⌦
⇢ddV = �@⌦   � (⇢dv) dV ,

= �T@⌦ (⇢dv) � n dS ,
where ⌦ is a fixed volume, @⌦ the surface of ⌦ and n is
outward pointing unit vector normal to the local surface.
� The flux of mass through the area da is da times ⇢dv � n.

Inherent local mass-conservation is desirable

Eulerian version: 

Ω stays fixed
in local coordinate system



Consider the continuity equation for dry air

@⇢d
@t

+   � (⇢dv) = 0, (1)

where ⇢d is the density of dry air (mass per unit volume of Earth’s
atmosphere) and v is a 3D velocity vector.

Z The continuity equation is a conservation law for mass:

@
@t

A
⌦
⇢ddV = �@⌦   � (⇢dv) dV ,

= �T@⌦ (⇢dv) � n dS ,
where ⌦ is a fixed volume, @⌦ the surface of ⌦ and n is
outward pointing unit vector normal to the local surface.
� The flux of mass through the area da is da times ⇢dv � n.

Inherent local mass-conservation is desirable

Lagrangian version: 

Ω moves with the flow



Conservation of mX along parcel trajectories

Consider the continuity equation for dry air and X

@⇢d
@t

+   � (⇢dv) = 0, (2)

@
@t

(mx⇢d ) +   � (mX⇢dv) = ⇢d S
mX , (3)

respectively. Applying the chain rule to (3), re-arranging and
substituting (2) implies

DmX

Dt
= S

mX ,

where D/Dt = @
@t

+ Ñv  is the total (material) derivative.



Conservation of mX along parcel trajectories

Consider the continuity equation for dry air and X

@⇢d
@t

+   � (⇢dv) = 0, (2)

@
@t

(mx⇢d ) +   � (mX⇢dv) = ⇢d S
mX , (3)

respectively. Applying the chain rule to (3), re-arranging and
substituting (2) implies

DmX

Dt
= S

mX ,

where D/Dt = @
@t

+ Ñv  is the total (material) derivative.

If the discretization scheme is 
based on the advective form of 
the continuity equation (.e.g, 
grid-point semi-Lagrangian

schemes) then inherent mass-
conservation is not guaranteed



Conservation of mX along parcel trajectories
(if no sources/sinks of mx)

Source: https://www.youtube.com/watch?v=tEHQH7Uly-8

• if mx(x,y,t=0)=constant then mx(x,y,t)=constant

• MIN[mx(x,y,t=0)] ≤ mx(x,y,t) ≤  MAX[mx(x,y,t=0)]



Conservation of mX along parcel trajectories
(if no sources/sinks of mx)

16 Ramachandran D. Nair, Michael N. Levy and Peter H. Lauritzen

Fig. 6 Numerical solution ( after 10 revolutions) of the 1D advection problem (2) with the high-
order nodal DG scheme. The left panel shows the solution for the smooth case, where a Gaussian
hill is used as the initial condition. The right panel shows the solution for the non-smooth case,
for which a rectangular wave is used as the initial condition. The computational domain [−1,1]
consists of 40 elements, each with 5 GLL quadrature points.

(26) is used for the discretization. The resulting time-dependent ODE is solved with
the third-order SSP-RK (29). 400 time steps are required for a complete revolution
along the domain. Figure 6 shows the Gaussian hill (left panel, dashed line) after 10
revolutions; the reference solution is also plotted with a solid line but it is visually
indistinguishable from the numerical solution.
For the non-smooth advection case the initial condition is a rectangular wave pat-

tern located at the center of the domain with unit height and width of 0.5 units; other
than this the boundary conditions and discretization are exactly the same as in the
smooth case. The right panel in Fig. 6 shows the numerical solution after 10 revolu-
tion, and the reference solution (initial condition) is also displayed (solid line). The
DG solution suffers from oscillations at the non-smooth edges. The steep gradients
at these point produces the Gibbs phenomena, however, the oscillations are confined
(or local) to a narrow region even after 10 revolutions. This is a remarkable prop-
erty of the DG method; other high-order approaches, such as the spectral element
method, propagate the noise along the entire domain.
The inviscid Burgers equation, Ut + (U2/2)x = 0, is a special case of (2) with

F(U) =U2/2. The initial condition for this problem isU0(x) = 1/2+ sin(πx) over
a periodic domain Ω = [0,2]. The domain is partitioned into 80 elements, and a
modal version DG scheme employing 4 GLL quadrature points is used for the sim-
ulations. Time integration is performed with the third-order SSP-RK (29), for which
a small time step of ∆ t = 0.0015/π is used. The exact solution is known for this
problem and is shown as solid narrow lines in Fig. 7, and the DG solution is marked
as diamond points (one value for each element). The left panel in Fig. 7 shows the
smooth solution time t = 3/(4π) (500 time steps). Clearly, the DG solution is in
good agreement with the analytic solution. However, at time t = 9/(8π) (750 time

Nair et al., (2011)



Conservation of mX along parcel trajectories

When modelers refer to “non-oscillatory”, “shape-preserving”, “physical realizable”
or “monotone” they usually refer to the monotonicity property as defined by 
Harten (1983):

1. No new local extrema in mx may be created
2. The value of a local minima/(maxima) is nondecreasing/(nonincreasing)

Atmospheric modelers tend to be a bit loose with the term `monotone’!

There are “stricter” characterizations such as total variation diminishing (TVD), 
however, they are probably too strong for our applications

=> the monotonicity property applies to mixing
ratio mx and not tracer mass! 

Less strict: positive-definite (scheme does not produce negatives)
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The inviscid Burgers equation, Ut + (U2/2)x = 0, is a special case of (2) with

F(U) =U2/2. The initial condition for this problem isU0(x) = 1/2+ sin(πx) over
a periodic domain Ω = [0,2]. The domain is partitioned into 80 elements, and a
modal version DG scheme employing 4 GLL quadrature points is used for the sim-
ulations. Time integration is performed with the third-order SSP-RK (29), for which
a small time step of ∆ t = 0.0015/π is used. The exact solution is known for this
problem and is shown as solid narrow lines in Fig. 7, and the DG solution is marked
as diamond points (one value for each element). The left panel in Fig. 7 shows the
smooth solution time t = 3/(4π) (500 time steps). Clearly, the DG solution is in
good agreement with the analytic solution. However, at time t = 9/(8π) (750 time

Nair et al., (2011)
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smooth case. The right panel in Fig. 6 shows the numerical solution after 10 revolu-
tion, and the reference solution (initial condition) is also displayed (solid line). The
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at these point produces the Gibbs phenomena, however, the oscillations are confined
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method, propagate the noise along the entire domain.
The inviscid Burgers equation, Ut + (U2/2)x = 0, is a special case of (2) with

F(U) =U2/2. The initial condition for this problem isU0(x) = 1/2+ sin(πx) over
a periodic domain Ω = [0,2]. The domain is partitioned into 80 elements, and a
modal version DG scheme employing 4 GLL quadrature points is used for the sim-
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as diamond points (one value for each element). The left panel in Fig. 7 shows the
smooth solution time t = 3/(4π) (500 time steps). Clearly, the DG solution is in
good agreement with the analytic solution. However, at time t = 9/(8π) (750 time

Nair et al., (2011)

Over- and under-shoots can 
lead to unphysical values 
(negative mixing ratio or 

mixing ratio > 1)

• Over- and undershoots can 
lead to unphysical values 
(negative mixing ratio or 
mixing ratio > 1)

• If we ignore (“chop”) the 
unphysical values we loose 
mass conservation and if 
the tracer is humidity it 
would impact energy 
conservation

• Spurious oscillations 
within the physical 
realizable range of values 
can trigger irreversible 
diabatic processes
(e.g., phase-changes, 
chemical reactions)



Conservation of mass along parcel trajectories

Note that
D⇢d
Dt

j 0,

but
D⇢d
Dt

= �⇢d  � Ñv .
If we integrate ⇢d over a Lagrangian volume ⌦L then

@
@t

A
⌦L

⇢d dV = 0.



Lagrangian volumes are rapidly distortingMomentum, vorticity and transport 7

Fig. 2: In the highly nonlinear flows that characterize fluid motion in the atmosphere and ocean,
Lagrangian control volumes are rapidly distorted due the presence of strong shear, rotation and
dilation. The rapid distortion of Lagrangian control volumes makes the formulation of numerical
models within the Lagrangian reference frame an extremely difficult challenge.

frame. A full analysis of RTT and its generalizations can be found in F. White’s
Fluid Mechanics textbook (White, 2008).

3.1 The Reynolds Transport Theorem

Let F be any intensive property of the fluid. Examples of F include ρ with units of
mass per unit volume, ρq with units of tracer mass per unit volume or ρ u with units
of momentum per unit volume. The conservation statement for F in the Lagrangian
reference frame is expressed as

d
dt

⎡

⎣

∫

VL

F(x,t)dV

⎤

⎦ = 0. (8)

Momentum, vorticity and transport 7

Fig. 2: In the highly nonlinear flows that characterize fluid motion in the atmosphere and ocean,
Lagrangian control volumes are rapidly distorted due the presence of strong shear, rotation and
dilation. The rapid distortion of Lagrangian control volumes makes the formulation of numerical
models within the Lagrangian reference frame an extremely difficult challenge.

frame. A full analysis of RTT and its generalizations can be found in F. White’s
Fluid Mechanics textbook (White, 2008).

3.1 The Reynolds Transport Theorem

Let F be any intensive property of the fluid. Examples of F include ρ with units of
mass per unit volume, ρq with units of tracer mass per unit volume or ρ u with units
of momentum per unit volume. The conservation statement for F in the Lagrangian
reference frame is expressed as

d
dt

⎡

⎣

∫

VL

F(x,t)dV

⎤

⎦ = 0. (8)

Ringler (2011)



Filament diagnostic (M. Prather, UCI)

GMDD
5, 189–228, 2012

Standard test case
suite

P. H. Lauritzen et al.
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moving vortices test case of (Nair and Jablonowski, 2008) and extend the simulation
time so that the filaments are stretched to a level where such processes are important
and/or change the parameters in the (Nair and Lauritzen, 2010) flow field to increase
the amount of deformation (see, e.g., Kent et al., 2012; Pudykiewicz, 2011).

The “filament” preservation diagnostic is formulated as follows. Define A(⇤,t) as the5

spherical area for which the spatial distribution of the tracer ⌅(⇥,�) satisfies

⌅(⇥,�)⇥ ⇤, (27)

at time t, where ⇤ is the threshold value. For a non-divergent flow field and a passive
and inert tracer ⌅, the area A(⇤,t) is invariant in time.

The discrete definition of A(⇤,t) is10

A(⇤,t)=
⇥

k⇤G
�Ak, (28)

where �Ak is the spherical area for which ⌅k is representative, K is the number of grid
cells, and G is the set of indices

G = {k ⇤ (1,...,K )|⌅k ⇥ ⇤}. (29)

For Eulerian finite-volume schemes �Ak is the area of the k-th control volume. For15

Eulerian grid-point schemes a control volume for which the grid-point value is rep-
resentative must be defined. Similarly for fully Lagrangian schemes based on point
values (parcels) control volumes for which the point values are representative must
be defined. Note that the “control volumes” should span the entire domain without
overlaps or “cracks” between them.20

Define the filament preservation diagnostic

⇧f(⇤,t)=

�
100.0� A(⇤,t)

A(⇤,t=0) if A(⇤,t=0) ⌅=0,
0.0, otherwise.

(30)

For infinite resolution (continuous case) and a non-divergent flow, ⇧f(⇤,t) is invariant
in time: ⇧f(⇤,t = 0) = ⇧f(⇤,t) = 100 for all ⇤. At finite resolution, however, the filament

204

This diagnostic does not rely on an analytical solution! 
Lauritzen et al. (2012)
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!"#$ %$ Filament diagnostics ℓf (t=T/2) as a function of threshold value τ for different configurations of the CSLAM scheme with Courant
number 5.5. (a) 1st-order version of CSLAM at ∆λ = 1.5◦ and ∆λ = 0 .75◦ , and (b) 3rd-order version of CSLAM with and without
monotone/shape-preserving filter at resolutions∆λ =1.5◦ and ∆λ= 0 .75◦.

!"#$ &$ Contour plot of the CSLAM numerical solution φ at resolution ∆λ = 1.5◦ and time-step T/120 using the slotted-cylinders initial
condition at time t= T/2 (a and c) and t = T (b and d) using no filter/limiter (a and b) and a shape-preserving filter (c and d). The standard
error norms for the unfiltered/unlimited solution are ℓ2 = 0 .24 , ℓ∞ = 0 .79 , φmin=−0 .19 , and φmax= 0 .15 , and for the shape-preserving
solution they are ℓ2 = 0 .26 , ℓ∞ = 0 .80 , φmin= 0 .0 , and φmax=−4 .34 ·10−3.
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In the tests described in the previous sections the accuracy is
assessed in a single-tracer setup. Now we consider two trac-
ers that are both advected by the same non-divergent flow
field ((18) and (19)). The initial conditions for the two trac-420

ers is the cosine bells initial condition (11) and correlated
cosine bells (13), respectively (see Fig.1b and d). The mix-
ing ratio of the two tracers are referred to as χ and ξ. Fol-
lowing Lagrangian parcels any functional relation between
tracers should mathematically be preserved at all times and425

hence any deviation from the pre-existing functional relation
between the tracers is essentially numerical errors introduced
by the transport scheme. Note that the ‘ideal’ scheme could
be a scheme that does not exactly preserve pre-existing func-
tional relations but for which the numerical errors are less430

than physical diffusive processes in nature.

In any case transport schemes should not disrupt func-
tional relations in unphysical ways. Numerical errors that
perturb such relations essentially introduce mixing or un-
mixing between the tracers. Lauritzen and Thuburn (2011)435

provides a discussion of the physical importance of transport



Tracer mass and air mass consistency

Consider the continuity equation for dry air and X (no
sources/sinks)

@⇢d
@t

+   � (⇢dv) = 0, (4)

@
@t

(mx⇢d ) +   � (mX⇢dv) = 0, (5)

respectively.

Note that if mx is 1 then (5) reduces to (4).

A scheme satisfying this is referred to as “free-stream preserving”



Examples of tracer mass and air mass consistency violation

Consider the continuity equation for dry air and X (no
sources/sinks)

@⇢d
@t

+   � (⇢dv) = 0, (4)

@
@t

(mx⇢d ) +   � (mX⇢dv) = 0, (5)

respectively.

Note that if mx is 1 then (5) reduces to (4).

A scheme satisfying this is referred to as “free-stream preserving”

Prescribed wind and mass 
fields from , e.g., re-
analysis.

Solve (4) and (5) with 
different numerical 
methods, on different grids 
and/or different time-steps



Examples of tracer mass and air mass consistency violation

Consider the continuity equation for dry air and X (no
sources/sinks)

@⇢d
@t

+   � (⇢dv) = 0, (4)

@
@t

(mx⇢d ) +   � (mX⇢dv) = 0, (5)

respectively.

Note that if mx is 1 then (5) reduces to (4).

A scheme satisfying this is referred to as “free-stream preserving”

If consistency is violated:

• monotonicity preservation may be violated
• tracer mass-conservation may be violated
• (5) may start evolving independently of (4)



Examples of tracer mass and air mass consistency violation

Consider the continuity equation for dry air and X (no
sources/sinks)

@⇢d
@t

+   � (⇢dv) = 0, (4)

@
@t

(mx⇢d ) +   � (mX⇢dv) = 0, (5)

respectively.

Note that if mx is 1 then (5) reduces to (4).

A scheme satisfying this is referred to as “free-stream preserving”

Assume we are solving (4) and (5) with the same finite-volume method:

(5) can be solved with a longer time-step than (4) – “free-stream preservation” can 
relatively easily be enforced.
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Relationships between long-lived stratospheric tracers, manifested in similar spatial structures on
scales ranging from a few to several thousand kilometers, are displayed most strikingly if the mixing
ratio of one is plotted against another, when the data collapse onto remarkably compact curves. -
Plumb (2007)
E.g., nitrous oxide (N2O) against ‘total odd nitrogen’ (NOy ) or chlorofluorocarbon (CFC’s)

[4] While meteorological variables are frequently dis-
played, as in the leftmost maps of Figures 1 and 2, on
surfaces of constant pressure, this is not the best way to
show, nor to think about, stratospheric transport. Diabatic
processes in the stratosphere, where radiation is the only
significant factor, are generally weak, with characteristic
timescales of tens of days [e.g., Andrews et al., 1987].
Consequently, to a first approximation, air parcels move
adiabatically along surfaces of constant specific entropy s.
Conventionally, the entropy variable used in meteorology is
‘‘potential temperature’’ q, defined in terms of temperature
T and pressure p as q = T(p0/p)

k, where p0 = 1000 hPa and
k = R/cp, where R is the gas constant and cp the specific heat
at constant pressure for air. (For a diatomic gas, k = 2/7.) It

is an elementary result of atmospheric thermodynamics that
s = cplnq, to within an arbitrary constant, and that q is
conserved in adiabatic flow. To a first approximation then,
air parcel motions can best be illustrated on isentropic
surfaces (of constant q). As we shall see, the diabatic
component of motion (through the isentropic surfaces) is
typically much slower than the flow within those surfaces.
[5] Despite the simplicity of the geopotential plots,

transport within the stratosphere is chaotic. The middle
map of Figure 1 shows results of a ‘‘reverse domain filling’’
calculation [Sutton et al., 1994; Schoeberl and Newman,
1995], in which 10 day back trajectories have been used to
construct the distribution of a tracer that has been advected,
from a smooth initial condition, on an isentropic surface

Figure 1. Maps for the Southern Hemisphere middle stratosphere on 6 September 1992. (left)
Geopotential height (km) on the 10 hPa isobaric surface (European Centre for Medium-Range Weather
Forecasts (ECMWF) reanalysis data). (middle) Results of a ‘‘reverse domain filling’’ calculation, in
which a tracer whose concentration is initially equal to latitude is advected by winds on the 1100 K
isentropic surface (near 5 hPa and 35 km) for 10 days, ending 6 September (image courtesy of
D. Waugh). (right) Net diurnally averaged diabatic heating rate (K d!1) on the 10 hPa isobaric surface
(data courtesy of J. Rosenfield). White line is the Q = 0 contour, and the color scale for this map is shown
at right. The Greenwich meridian is at the right; the outer circle is the equator.

Figure 2. Maps for the Northern Hemisphere lower stratosphere on 28 January 1992. (left) Geopotential
height (km) on the 50 hPa isobaric surface (ECMWF reanalysis data). (middle) Results of a ‘‘reverse
domain filling’’ calculation, in which a tracer whose concentration is initially equal to latitude is advected
by winds on the 480 K isentropic surface (near 60 hPa and 19 km) for 10 days, ending 28 January (image
courtesy of D. Waugh). (right) Diurnally averaged net diabatic heating rate Q (K d!1) on the 50 hPa
isobaric surface (data courtesy of J. Rosenfield). White line is the Q = 0 contour, and the color scale for
this map is shown at right. The Greenwich meridian is at the right; the outer circle is the equator.
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time is shown in Figure 6. The dominant feature of the
meteorology is the polar vortex, extending from northwest-
ern Canada across the pole to northern Siberia. Figure 5 left
shows time series along the flight track of q and mixing
ratios of the long-lived chemical tracers N2O, CFC-11
(CCl3F), and NOy. In terms of q the flight profile is
characterized by rapid ascent following takeoff up to about
480 K and a long gentle decline to about 450 K, followed
by a rapid descent prior to landing. Not surprisingly, the
time series of the three tracers show marked and simulta-
neous tendencies during ascent and descent, manifesting the
strong decrease of N2O and CFC-11 and strong increase of
NOy, with q across the tropopause and in the lower
stratosphere. During the cruise phase, N2O increases grad-
ually between 47,500 and 60,500 s, largely a consequence
of the slow descent. However, there is a sudden drop of
about 50 ppbv in the N2O mixing ratio at time t ’ 60,500 s,
which is not accompanied by any corresponding change in
q: what is being detected is a sharp isentropic gradient in the
mixing ratio. This feature, which is located at about (70!N,
39!W), is seen as the aircraft is nearing the edge of the polar
vortex (see Figure 6) and detecting high-latitude air with
lower concentrations of tropospheric source gases. After a
slow increase, there are further sharp reductions at t ’
65,000 s and t ’ 67,000 s. Like the first, these features do
not correspond with sudden changes in q and thus also
represent sharp isentropic gradients of mixing ratio. These
same features are mirrored in the other tracers, as is evident
from their time series. The correspondence between the
tracers is seen most clearly when one is plotted against
another as on Figure 5 right. Figure 5 illustrates the
remarkable correlation between mixing ratios of the tropo-
spheric source gases CFC-11 and N2O and anticorrelation

between those of N2O and the stratospheric source gas NOy.
Despite the considerable range of variability of each species
and the wide range of q and of latitude covered by the
observations the data collapse to remarkably compact
curves for each species pair.
[14] The fact that the data span a range of latitudes and of

q is significant here. The compactness would be much less
significant if the observations comprised vertical profiles at
a single location or latitude profiles on a surface of constant
q, since each mixing ratio would then be a function of a
single variable (latitude or q): Apparently compact functions
of tracer versus tracer would follow from a simple change of
variables. What is significant is that data from near-vertical
and near-isentropic transects collapse in tracer-tracer space
onto the same curve. This is, in fact, another manifestation
of ‘‘equilibrium slopes’’ since if the isosurfaces of the
mixing ratios of two tracers have the same shape, a given
mixing ratio of one tracer is always accompanied by the
same mixing ratio of the second. In fact, the more local
aircraft results make a stronger statement than the climato-
logical one: Plumb and Ko [1992] argued that if compact-
ness is present in the climatology, it is present on shorter
timescales and space scales for these long-lived tracers,
since they are conserved (and their relationship is thus
preserved) under short-term displacement. Building on the
earlier advective-diffusive arguments of Holton [1986] and
Mahlman et al. [1986], Plumb and Ko [1992] also showed
that provided rapid isentropic mixing extends globally, the
net (globally integrated) vertical flux of any species is
diffusive, and, in consequence, the slope of the tracer-tracer
curve between any two species, dc(2)/dc(1), is equal to the
ratio of net global fluxes of the two species, a result that has
been exploited to quantify stratospheric lifetimes of various

Figure 5. Selected data from the ER-2 flight of 14 January 2000. (left) Time series (time is given in
time of day, UTC) of potential temperature (K), mixing ratios of N2O (open triangles (ppbv)), CFC-11
(diamonds (parts per trillion by volume (pptv)), and 10 times the mixing ratio of NOy (dots (ppbv), these
data are offset downward by 100). (right) NOy (triangles) and CFC-11 (dots) plotted against N2O. N2O
and CFC-11 data are from the airborne chromatograph for atmospheric trace species instrument [Elkins et
al., 1996], and NOy data are from the ER-2 NO/NOy instrument [Fahey et al., 1985].

RG4005 Plumb: TRACER INTERRELATIONSHIPS

6 of 33

RG4005

Figures from Plumb (2007).
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Correlations between long-lived species in the stratosphereCorrelations between longlived species in the stratosphere

Relationships between long-lived stratospheric tracers, manifested in similar spatial structures on
scales ranging from a few to several thousand kilometers, are displayed most strikingly if the mixing
ratio of one is plotted against another, when the data collapse onto remarkably compact curves. -
Plumb (2007)
E.g., nitrous oxide (N2O) against ‘total odd nitrogen’ (NOy ) or chlorofluorocarbon (CFC’s)

[4] While meteorological variables are frequently dis-
played, as in the leftmost maps of Figures 1 and 2, on
surfaces of constant pressure, this is not the best way to
show, nor to think about, stratospheric transport. Diabatic
processes in the stratosphere, where radiation is the only
significant factor, are generally weak, with characteristic
timescales of tens of days [e.g., Andrews et al., 1987].
Consequently, to a first approximation, air parcels move
adiabatically along surfaces of constant specific entropy s.
Conventionally, the entropy variable used in meteorology is
‘‘potential temperature’’ q, defined in terms of temperature
T and pressure p as q = T(p0/p)

k, where p0 = 1000 hPa and
k = R/cp, where R is the gas constant and cp the specific heat
at constant pressure for air. (For a diatomic gas, k = 2/7.) It

is an elementary result of atmospheric thermodynamics that
s = cplnq, to within an arbitrary constant, and that q is
conserved in adiabatic flow. To a first approximation then,
air parcel motions can best be illustrated on isentropic
surfaces (of constant q). As we shall see, the diabatic
component of motion (through the isentropic surfaces) is
typically much slower than the flow within those surfaces.
[5] Despite the simplicity of the geopotential plots,

transport within the stratosphere is chaotic. The middle
map of Figure 1 shows results of a ‘‘reverse domain filling’’
calculation [Sutton et al., 1994; Schoeberl and Newman,
1995], in which 10 day back trajectories have been used to
construct the distribution of a tracer that has been advected,
from a smooth initial condition, on an isentropic surface

Figure 1. Maps for the Southern Hemisphere middle stratosphere on 6 September 1992. (left)
Geopotential height (km) on the 10 hPa isobaric surface (European Centre for Medium-Range Weather
Forecasts (ECMWF) reanalysis data). (middle) Results of a ‘‘reverse domain filling’’ calculation, in
which a tracer whose concentration is initially equal to latitude is advected by winds on the 1100 K
isentropic surface (near 5 hPa and 35 km) for 10 days, ending 6 September (image courtesy of
D. Waugh). (right) Net diurnally averaged diabatic heating rate (K d!1) on the 10 hPa isobaric surface
(data courtesy of J. Rosenfield). White line is the Q = 0 contour, and the color scale for this map is shown
at right. The Greenwich meridian is at the right; the outer circle is the equator.

Figure 2. Maps for the Northern Hemisphere lower stratosphere on 28 January 1992. (left) Geopotential
height (km) on the 50 hPa isobaric surface (ECMWF reanalysis data). (middle) Results of a ‘‘reverse
domain filling’’ calculation, in which a tracer whose concentration is initially equal to latitude is advected
by winds on the 480 K isentropic surface (near 60 hPa and 19 km) for 10 days, ending 28 January (image
courtesy of D. Waugh). (right) Diurnally averaged net diabatic heating rate Q (K d!1) on the 50 hPa
isobaric surface (data courtesy of J. Rosenfield). White line is the Q = 0 contour, and the color scale for
this map is shown at right. The Greenwich meridian is at the right; the outer circle is the equator.
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time is shown in Figure 6. The dominant feature of the
meteorology is the polar vortex, extending from northwest-
ern Canada across the pole to northern Siberia. Figure 5 left
shows time series along the flight track of q and mixing
ratios of the long-lived chemical tracers N2O, CFC-11
(CCl3F), and NOy. In terms of q the flight profile is
characterized by rapid ascent following takeoff up to about
480 K and a long gentle decline to about 450 K, followed
by a rapid descent prior to landing. Not surprisingly, the
time series of the three tracers show marked and simulta-
neous tendencies during ascent and descent, manifesting the
strong decrease of N2O and CFC-11 and strong increase of
NOy, with q across the tropopause and in the lower
stratosphere. During the cruise phase, N2O increases grad-
ually between 47,500 and 60,500 s, largely a consequence
of the slow descent. However, there is a sudden drop of
about 50 ppbv in the N2O mixing ratio at time t ’ 60,500 s,
which is not accompanied by any corresponding change in
q: what is being detected is a sharp isentropic gradient in the
mixing ratio. This feature, which is located at about (70!N,
39!W), is seen as the aircraft is nearing the edge of the polar
vortex (see Figure 6) and detecting high-latitude air with
lower concentrations of tropospheric source gases. After a
slow increase, there are further sharp reductions at t ’
65,000 s and t ’ 67,000 s. Like the first, these features do
not correspond with sudden changes in q and thus also
represent sharp isentropic gradients of mixing ratio. These
same features are mirrored in the other tracers, as is evident
from their time series. The correspondence between the
tracers is seen most clearly when one is plotted against
another as on Figure 5 right. Figure 5 illustrates the
remarkable correlation between mixing ratios of the tropo-
spheric source gases CFC-11 and N2O and anticorrelation

between those of N2O and the stratospheric source gas NOy.
Despite the considerable range of variability of each species
and the wide range of q and of latitude covered by the
observations the data collapse to remarkably compact
curves for each species pair.
[14] The fact that the data span a range of latitudes and of

q is significant here. The compactness would be much less
significant if the observations comprised vertical profiles at
a single location or latitude profiles on a surface of constant
q, since each mixing ratio would then be a function of a
single variable (latitude or q): Apparently compact functions
of tracer versus tracer would follow from a simple change of
variables. What is significant is that data from near-vertical
and near-isentropic transects collapse in tracer-tracer space
onto the same curve. This is, in fact, another manifestation
of ‘‘equilibrium slopes’’ since if the isosurfaces of the
mixing ratios of two tracers have the same shape, a given
mixing ratio of one tracer is always accompanied by the
same mixing ratio of the second. In fact, the more local
aircraft results make a stronger statement than the climato-
logical one: Plumb and Ko [1992] argued that if compact-
ness is present in the climatology, it is present on shorter
timescales and space scales for these long-lived tracers,
since they are conserved (and their relationship is thus
preserved) under short-term displacement. Building on the
earlier advective-diffusive arguments of Holton [1986] and
Mahlman et al. [1986], Plumb and Ko [1992] also showed
that provided rapid isentropic mixing extends globally, the
net (globally integrated) vertical flux of any species is
diffusive, and, in consequence, the slope of the tracer-tracer
curve between any two species, dc(2)/dc(1), is equal to the
ratio of net global fluxes of the two species, a result that has
been exploited to quantify stratospheric lifetimes of various

Figure 5. Selected data from the ER-2 flight of 14 January 2000. (left) Time series (time is given in
time of day, UTC) of potential temperature (K), mixing ratios of N2O (open triangles (ppbv)), CFC-11
(diamonds (parts per trillion by volume (pptv)), and 10 times the mixing ratio of NOy (dots (ppbv), these
data are offset downward by 100). (right) NOy (triangles) and CFC-11 (dots) plotted against N2O. N2O
and CFC-11 data are from the airborne chromatograph for atmospheric trace species instrument [Elkins et
al., 1996], and NOy data are from the ER-2 NO/NOy instrument [Fahey et al., 1985].
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Correlations between longlived species in the stratosphere

Relationships between long-lived stratospheric tracers, manifested in similar spatial structures on
scales ranging from a few to several thousand kilometers, are displayed most strikingly if the mixing
ratio of one is plotted against another, when the data collapse onto remarkably compact curves. -
Plumb (2007)
E.g., nitrous oxide (N2O) against ‘total odd nitrogen’ (NOy ) or chlorofluorocarbon (CFC’s)

[4] While meteorological variables are frequently dis-
played, as in the leftmost maps of Figures 1 and 2, on
surfaces of constant pressure, this is not the best way to
show, nor to think about, stratospheric transport. Diabatic
processes in the stratosphere, where radiation is the only
significant factor, are generally weak, with characteristic
timescales of tens of days [e.g., Andrews et al., 1987].
Consequently, to a first approximation, air parcels move
adiabatically along surfaces of constant specific entropy s.
Conventionally, the entropy variable used in meteorology is
‘‘potential temperature’’ q, defined in terms of temperature
T and pressure p as q = T(p0/p)

k, where p0 = 1000 hPa and
k = R/cp, where R is the gas constant and cp the specific heat
at constant pressure for air. (For a diatomic gas, k = 2/7.) It

is an elementary result of atmospheric thermodynamics that
s = cplnq, to within an arbitrary constant, and that q is
conserved in adiabatic flow. To a first approximation then,
air parcel motions can best be illustrated on isentropic
surfaces (of constant q). As we shall see, the diabatic
component of motion (through the isentropic surfaces) is
typically much slower than the flow within those surfaces.
[5] Despite the simplicity of the geopotential plots,

transport within the stratosphere is chaotic. The middle
map of Figure 1 shows results of a ‘‘reverse domain filling’’
calculation [Sutton et al., 1994; Schoeberl and Newman,
1995], in which 10 day back trajectories have been used to
construct the distribution of a tracer that has been advected,
from a smooth initial condition, on an isentropic surface

Figure 1. Maps for the Southern Hemisphere middle stratosphere on 6 September 1992. (left)
Geopotential height (km) on the 10 hPa isobaric surface (European Centre for Medium-Range Weather
Forecasts (ECMWF) reanalysis data). (middle) Results of a ‘‘reverse domain filling’’ calculation, in
which a tracer whose concentration is initially equal to latitude is advected by winds on the 1100 K
isentropic surface (near 5 hPa and 35 km) for 10 days, ending 6 September (image courtesy of
D. Waugh). (right) Net diurnally averaged diabatic heating rate (K d!1) on the 10 hPa isobaric surface
(data courtesy of J. Rosenfield). White line is the Q = 0 contour, and the color scale for this map is shown
at right. The Greenwich meridian is at the right; the outer circle is the equator.

Figure 2. Maps for the Northern Hemisphere lower stratosphere on 28 January 1992. (left) Geopotential
height (km) on the 50 hPa isobaric surface (ECMWF reanalysis data). (middle) Results of a ‘‘reverse
domain filling’’ calculation, in which a tracer whose concentration is initially equal to latitude is advected
by winds on the 480 K isentropic surface (near 60 hPa and 19 km) for 10 days, ending 28 January (image
courtesy of D. Waugh). (right) Diurnally averaged net diabatic heating rate Q (K d!1) on the 50 hPa
isobaric surface (data courtesy of J. Rosenfield). White line is the Q = 0 contour, and the color scale for
this map is shown at right. The Greenwich meridian is at the right; the outer circle is the equator.
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time is shown in Figure 6. The dominant feature of the
meteorology is the polar vortex, extending from northwest-
ern Canada across the pole to northern Siberia. Figure 5 left
shows time series along the flight track of q and mixing
ratios of the long-lived chemical tracers N2O, CFC-11
(CCl3F), and NOy. In terms of q the flight profile is
characterized by rapid ascent following takeoff up to about
480 K and a long gentle decline to about 450 K, followed
by a rapid descent prior to landing. Not surprisingly, the
time series of the three tracers show marked and simulta-
neous tendencies during ascent and descent, manifesting the
strong decrease of N2O and CFC-11 and strong increase of
NOy, with q across the tropopause and in the lower
stratosphere. During the cruise phase, N2O increases grad-
ually between 47,500 and 60,500 s, largely a consequence
of the slow descent. However, there is a sudden drop of
about 50 ppbv in the N2O mixing ratio at time t ’ 60,500 s,
which is not accompanied by any corresponding change in
q: what is being detected is a sharp isentropic gradient in the
mixing ratio. This feature, which is located at about (70!N,
39!W), is seen as the aircraft is nearing the edge of the polar
vortex (see Figure 6) and detecting high-latitude air with
lower concentrations of tropospheric source gases. After a
slow increase, there are further sharp reductions at t ’
65,000 s and t ’ 67,000 s. Like the first, these features do
not correspond with sudden changes in q and thus also
represent sharp isentropic gradients of mixing ratio. These
same features are mirrored in the other tracers, as is evident
from their time series. The correspondence between the
tracers is seen most clearly when one is plotted against
another as on Figure 5 right. Figure 5 illustrates the
remarkable correlation between mixing ratios of the tropo-
spheric source gases CFC-11 and N2O and anticorrelation

between those of N2O and the stratospheric source gas NOy.
Despite the considerable range of variability of each species
and the wide range of q and of latitude covered by the
observations the data collapse to remarkably compact
curves for each species pair.
[14] The fact that the data span a range of latitudes and of

q is significant here. The compactness would be much less
significant if the observations comprised vertical profiles at
a single location or latitude profiles on a surface of constant
q, since each mixing ratio would then be a function of a
single variable (latitude or q): Apparently compact functions
of tracer versus tracer would follow from a simple change of
variables. What is significant is that data from near-vertical
and near-isentropic transects collapse in tracer-tracer space
onto the same curve. This is, in fact, another manifestation
of ‘‘equilibrium slopes’’ since if the isosurfaces of the
mixing ratios of two tracers have the same shape, a given
mixing ratio of one tracer is always accompanied by the
same mixing ratio of the second. In fact, the more local
aircraft results make a stronger statement than the climato-
logical one: Plumb and Ko [1992] argued that if compact-
ness is present in the climatology, it is present on shorter
timescales and space scales for these long-lived tracers,
since they are conserved (and their relationship is thus
preserved) under short-term displacement. Building on the
earlier advective-diffusive arguments of Holton [1986] and
Mahlman et al. [1986], Plumb and Ko [1992] also showed
that provided rapid isentropic mixing extends globally, the
net (globally integrated) vertical flux of any species is
diffusive, and, in consequence, the slope of the tracer-tracer
curve between any two species, dc(2)/dc(1), is equal to the
ratio of net global fluxes of the two species, a result that has
been exploited to quantify stratospheric lifetimes of various

Figure 5. Selected data from the ER-2 flight of 14 January 2000. (left) Time series (time is given in
time of day, UTC) of potential temperature (K), mixing ratios of N2O (open triangles (ppbv)), CFC-11
(diamonds (parts per trillion by volume (pptv)), and 10 times the mixing ratio of NOy (dots (ppbv), these
data are offset downward by 100). (right) NOy (triangles) and CFC-11 (dots) plotted against N2O. N2O
and CFC-11 data are from the airborne chromatograph for atmospheric trace species instrument [Elkins et
al., 1996], and NOy data are from the ER-2 NO/NOy instrument [Fahey et al., 1985].
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Similarly:

The total of chemical species within some chemical family may be preserved following an air
parcel although the individual species have a complicated relation to each other and may be
transformed into each other through chemical reactions (e.g., total chlorine)

Aerosol-cloud interactions (Ovtchinnikov and Easter, 2009)

The transport operator should ideally not perturb pre-existing functional relationships
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Analyzing scatter plots
Analyzing scatter plots

χ (max)χ

ξ

χ

ξ

(max)

(min)

(min)

ξ

Analytical pre-existing functional relationship curve  (linear)

⇠ =  (�) = a · �+ b, � 2

h
�(min),�(max)

i
,

where a and b are constants, and � and ⇠ are the mixing ratios of the two tracers
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Analyzing scatter plots
Analyzing scatter plots

χ (max)χ

ξ

χ

ξ

(max)

(min)

(min)

ξ

Analytical pre-existing functional relationship curve  (linear)

� and ⇠ are transported separately by the transport scheme

�n+1
k = T (�n

j ), j 2 H,

⇠n+1
k = T (⇠nj ), j 2 H,

where T is the transport operator and H the set of indices defining the ‘halo’ for T .
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Analyzing scatter plots
Analyzing scatter plots

χ (max)χ

ξ

χ

ξ

(max)

(min)

(min)

ξ

Analytical pre-existing functional relationship curve  (linear)

If T is ‘semi-linear’ then linear pre-existing functional relations are preserved:

⇠n+1
k = T (⇠nj ) = T (a�n

j + b) = aT (�n
j ) + bT (1) = aT (�n

j ) + b = a�n+1
k + b.

! If transport operator is non-linear the relationship might be violated.
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Analyzing scatter plots
Analyzing scatter plots

Consider the measurements of 
atmospheric constituents

N2

 

O

NOy

OBSERVATIONS

Enormous amount of information
• Mixing physics
• Mixing time scales
• Chemical production and loss

These are observations made by 
airplanes.  They are, for all 

practical aspects, instantaneous, 
point measurements.

Spectral method and correlations

N2

 

O

NOy

Spectral Method
(widens over time)

Sources of pathology
• Inability to fit local features
•

 

Inconsistency between tracer and 
fluid continuity equation
• Dispersion errors
• Filtering

Van Leer method and correlations

N2

 

O

NOy

Van Leer Method

Why does this work?
•

 

Consideration of volumes and 
mixing these volumes consistently.

Figures from R.Rood’s talk at the 2008 NCAR ASP colloquium

Analytical pre-existing functional relationship curve  (linear)

! carefully designed finite-volume schemes are ‘semi-linear’ even with limiters/filters!
(Thuburn and Mclntyre, 1997; Lin and Rood, 1996)
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The terminator ‘toy’-chemistry test: A simple tool to 
assess errors in transport schemes
(Lauritzen et al., 2015)
See: http://www.cgd.ucar.edu/cms/pel/terminator.html The  terminator 

test

• Consider 2 reactive chemical species, Cl and Cl2 :

• Steady-state solution (no flow):

• In any flow-field Cly=Cl+2*Cl2 should be constant at all times 
(correlation preservation) 

http://www.cgd.ucar.edu/cms/pel/terminator.html


The terminator ‘toy’-chemistry test: A simple tool to 
assess errors in transport schemes
(Lauritzen et al., 2015)
See: http://www.cgd.ucar.edu/cms/pel/terminator.html The  terminator 

test

• Consider 2 reactive chemical species, Cl and Cl2 :

• Steady-state solution (no flow):

• In any flow-field Cly=Cl+2*Cl2 should be constant at all times 
(linear correlation preservation). 

ClCL2

http://www.cgd.ucar.edu/cms/pel/terminator.html


CAM-SE

CAM-FV (Lin 2004)

The  terminator 
test

The terminator ‘toy’-chemistry test: A simple tool to 
assess errors in transport schemes
(Lauritzen et al., 2015)
See: http://www.cgd.ucar.edu/cms/pel/terminator.html

CLy

• In any flow-field Cly=Cl+2*Cl2 should be constant at all times (correlation preservation). 

http://www.cgd.ucar.edu/cms/pel/terminator.html


Conserving sum of “families” of speciesMotivation: Three tracer test

Chlorine (in CAM-chemistry)

Total Organic Chlorine (set at the surface)

TORG

C`
= CH3C`+3CF C`3+2CF2 C`2+3C` C`2FC C` F2+HCF2 C`+4CC`4+3CH3C C`3. (15)

Total Inorganic Chlorine (created from break down of TORG

Cl
)

T INORG

C`
= C` + C` O + O C`O + 2C`2 + 2C`2 O2 + HO C` + C` ONO2 + H C`, (16)

Total Chlorine
TCLY = TORG

C`
+ T INORG

C`
(17)

Total chlorine TCLY should be conserved in the upper troposphere and stratosphere
(despite complex chemical reactions between the di↵erent chlorine species)!48 L. K. Emmons et al.: MOZART-4 description

Table 3. Continued.

Reactants Products Rate

PAN + M � CH3CO3 + NO2 + M k(CH3CO3+NO2+M)·1.111E28
·exp(–14 000/T)

CH3CO3 + CH3CO3 � 2·CH3O2 + 2·{CO2} 2.50E-12·exp(500/T)
GLYALD + OH � HO2 + .2·GLYOXAL + .8·CH2O + .8·{CO2} 1.00E-11
GLYOXAL + OH � HO2 + CO + {CO2} 1.10E-11
CH3COOH + OH � CH3O2 + {CO2} + H2O 7.00E-13
C2H5OH + OH � HO2 + CH3CHO 6.90E-12·exp(–230/T)
C3H6 + OH + M � PO2 + M ko=8.00E-27·(300/T)3.50;

ki=3.00E-11; f=0.50
C3H6 + O3 � .54·CH2O + .19·HO2 + .33·OH 6.50E-15·exp(–1900/T)

+ .5·CH3CHO + .56·CO + .31·CH3O2
+ .25·CH3COOH + .08·CH4

C3H6 + NO3 � ONIT 4.60E-13·exp(–1156/T)
PO2 + NO � CH3CHO + CH2O + HO2 + NO2 4.20E-12·exp(180/T)
PO2 + HO2 � POOH + O2 7.50E-13·exp(700/T)
POOH + OH � .5·PO2 + .5·OH + .5·HYAC + H2O 3.80E-12·exp(200/T)
C3H8 + OH � C3H7O2 + H2O 1.00E-11·exp(–660/T)
C3H7O2 + NO � .82·CH3COCH3 + NO2 + .27·CH3CHO + HO2 4.20E-12·exp(180/T)
C3H7O2 + HO2 � C3H7OOH + O2 7.50E-13·exp(700/T)
C3H7O2 + CH3O2 � CH2O + HO2 + .82·CH3COCH3 3.75E-13·exp(–40/T)
C3H7OOH + OH � H2O + C3H7O2 3.80E-12·exp(200/T)
CH3COCH3 + OH � RO2 + H2O 3.82E-11·exp(–2000/T) + 1.33E-13
RO2 + NO � CH3CO3 + CH2O + NO2 2.90E-12·exp(300/T)
RO2 + HO2 � ROOH + O2 8.60E-13·exp(700/T)
RO2 + CH3O2 � .3·CH3CO3 + .2·HYAC + .8·CH2O 2.00E-12·exp(500/T)

+ .5·CH3OH + .3·HO2 + .5·CH3COCHO
ROOH + OH � RO2 + H2O 3.80E-12·exp(200/T)
ONIT + OH � NO2 + CH3COCHO 6.80E-13
CH3COCHO + OH � CH3CO3 + CO + H2O 8.40E-13·exp(830/T)
CH3COCHO + NO3 � HNO3 + CO + CH3CO3 1.40E-12·exp(–1860/T)
HYAC + OH � CH3COCHO + HO2 3.00E-12
BIGENE + OH � ENEO2 5.40E-11
ENEO2 + NO � CH3CHO + .5·CH2O + .5·CH3COCH3 + HO2 + NO2 4.20E-12·exp(180/T)
MEK + OH � MEKO2 2.30E-12·exp(–170/T)
MEKO2 + NO � CH3CO3 + CH3CHO + NO2 4.20E-12·exp(180/T)
MEKO2 + HO2 � MEKOOH 7.50E-13·exp(700/T)
MEKOOH + OH � MEKO2 3.80E-12·exp(200/T)
MPAN + OH � .5·HYAC + .5·NO3 + .5·CH2O ko=8.00E-27·(300/T)3.50;

+ .5·HO2 + .5·{CO2} ki=3.00E-11; f=0.50
BIGALK + OH � ALKO2 3.50E-12
ALKO2 + NO � .4·CH3CHO + .1·CH2O + .25·CH3COCH3 4.20E-12·exp(180/T)

+ .9·HO2 + .75·MEK + .9·NO2 + .1·ONIT
ALKO2 + HO2 � ALKOOH 7.50E-13·exp(700/T)
ALKOOH + OH � ALKO2 3.80E-12·exp(200/T)
ISOP + OH � ISOPO2 2.54E-11·exp(410/T)
ISOP + O3 � .4·MACR + .2·MVK + .07·C3H6 + .27·OH 1.05E-14·exp(-2000/T)

+ .06·HO2 + .6·CH2O + .3·CO
+ .1·O3 + .2·MCO3 + .2·CH3COOH

ISOPO2 + NO � .08·ONITR + .92·NO2 + HO2 + .55·CH2O 4.40E-12·exp(180/T)
+ .23·MACR + .32·MVK + .37·HYDRALD

ISOPO2 + NO3 � HO2 + NO2 + .6·CH2O + .25·MACR 2.40E-12
+ .35·MVK + .4·HYDRALD

ISOPO2 + HO2 � ISOPOOH 8.00E-13·exp(700/T)
ISOPOOH + OH � .5·XO2 + .5·ISOPO2 1.52E-11·exp(200/T)
ISOPO2 + CH3O2 � 1.2·CH2O + .19·MACR + .26·MVK + .3·HYDRALD 5.00E-13·exp(400/T)

+ .25·CH3OH + HO2

Geosci. Model Dev., 3, 43–67, 2010 www.geosci-model-dev.net/3/43/2010/
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Motivation: Three tracer test

(left) longitude-averaged surface TCLY as a function of time and latitude: Constant!
(right) same as (left) but near tropopause: Spurious 7% deviations (near sharp gradients)!

Problem?

Transport scheme can not maintain the sum when transporting the species individually:

N�X

i=1

T(�i) 6= T

0

@
N�X

i=1

�i

1

A , (15)

where N� is the number of species �i.
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Conserving sum of “families” of species

“Semi-linear” property is a 
necessary but not sufficient 
condition for conserving a 
sum of more than 2 tracers



Motivation: Three tracer test

(left) same as previous slide:

large unphysical deviations from constancy in TCLY near the edge of the polar
stratospheric vortex ) less TCLY over South pole ) less ozone loss (error on the
order of 10%).

(right) same as (left) but using a fixer:

(i) transport the individual species

(ii) transport the total

in each grid cell scale the individual species by the di↵erence between (i) and (ii)

Peter Hjort Lauritzen (NCAR) NCAR transport e↵orts February 28, 2012 23 / 27

Conserving sum of “families” of species



Three tracer test
Figure 3. The numerical solution at t = T/2 for the cosine bells and correlated cosine bells initial conditions (first and second column, respectively)
using CSLAM with and without a shape-preserving filter (first and second row, respectively).

Figure 4. Contour plots of the slotted-cylinder initial conditions (a) �(t = 0), (b) �(t = 0) and (c) �(t = 0), respectively, and the corresponding
shape-preserving CSLAM solutions at t = T/2 (d,e,f), respectively, for the three-tracer test.

3.3. Initial conditions for the three-tracer test

Following the one-dimensional three-tracer test proposed in
Ovtchinnikov and Easter (2009) we use non-smooth initial
conditions; this is most likely to activate shape-preserving
filters in the transport scheme, and is relevant to the most
challenging cases met in practice such as the steep chemical
gradients seen near the terminator (e.g. Santillana et al.

2010). The double cosine-bells (19) are replaced by slotted-
cylinders (Zalesak 1979) defined as follows,

� = �(sc)(�, �) =

�
��������

��������

c if ri � r and |�� �i| � r/6
for i = 1, 2,

c if r1 � r and |�� �1| < r/6
and � � �1 < � 5

12r ,
c if r2 � r and |�� �2| < r/6

and � � �2 > 5
12r ,

g otherwise,
(23)

Copyright c� 2011 Royal Meteorological Society Q. J. R. Meteorol. Soc. 00: 1–13 (2011)
Prepared using qjrms4.cls
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(c) CSLAM, shape-preserving filter

Figure 6. Scatter plots at t = T/2 for two nonlinearly correlated species based on cosine hills initial conditions using (a) first-order version of CSLAM,
(b) standard CSLAM based on bi-parabolic reconstruction functions, and (c) standard CSLAM with a shape-preserving filter. The solid lines mark the
boundaries between the areas used to classify the numerical mixing.

Table II. Columns 2,3 and 4 list standard error norms �1, �2 and ��, respectively, at t = T for a single tracer � using initial condition �(cb)

for different configurations of the CSLAM scheme. Second row is CSLAM based on constant reconstruction functions (1st-order), third row is
third-order reconstruction functions and in the fourth row a shape-preserving filter has been applied to the third-order reconstruction function.
The remaining columns (5,6,7) show mixing diagnostics �r, �u and �o at t = T/2 for the nonlinearly interrelated tracers � and � initialized with
� = �(cb) and � = �

`
�(cb)

´
. Contour plots of the CSLAM numerical solution at t = T/2 for � and � are on Fig. 3.

scheme �1 �2 �� �r �u �o

1st-order CSLAM 1.93⇥10�1 3.82⇥10�1 4.57⇥10�1 6.02⇥10�3 0.0 0.0
3rd-order CSLAM 1.58⇥10�2 3.28⇥10�2 4.73⇥10�2 7.55⇥10�4 1.58⇥10�4 3.79⇥10�4

3rd-order CSLAM with filter 1.58⇥10�2 4.33⇥10�2 8.91⇥10�2 6.28⇥10�4 6.73⇥10�5 0.0

Figure 7. Contour plot at t = T/2 for the sum of the individually
transported tracers �, � and � in the three-tracer test using the CSLAM
scheme with a shape-preserving filter. Initial conditions for �, � and �
and CSLAM solution at t = T/2 are depicted on Fig. 4abc and Fig. 4def,
respectively.

used to make predictions about the likely behaviour and
possible problems when chemistry is included. To illustrate
their usefulness, we consider an idealized but typical
chemical reaction between two tracers with concentrations
(�� 0.1) and �, where � and � are the solution fields in
the two-tracer test. The reaction rate is assumed to be slow
enough that we can neglect its effects on � and �. We
subtract the background value for � so that the reaction rate
is zero for the background distribution.

The rate at which product is formed at time t is
proportional to the domain integrated reaction rate

R(t) =
N�

k=1

(�k � 0.1) �k �Ak. (27)

For a non-divergent flow and in continuous space the
instantaneous domain integrated reaction rate

��
(��

0.1) � dA is invariant in time.
The domain integrated reaction rate R(t) may be

partitioned into contributions from scatter points associated
with ‘real mixing’ (A), range-preserving unmixing (B),
and overshooting. Reaction rates associated with these
three domains on the scatter plot are referred to as Rr,
Ru and Ro, respectively. Obviously, R = Rr + Ru + Ro.
Since numerical mixing is inevitable for practical semi-
Lagrangian or Eulerian schemes the mixing introduced by
the transport scheme should ideally manifest itself through
‘real mixing’ only and not unmixing. In terms of R(t) the
scheme providing the most physically realizable solutions
should produce reaction rates dominated by R r.

Results for reaction rates for different configurations
of CSLAM are shown in Table III. Not surprisingly the
first-order version of CSLAM overestimates the reaction
rate at t = T/2 due to excessive numerical diffusion. The
domain integrated reaction rate R(t = T/2) for the non-
shape-preserving version of third-order CSLAM is closer
to the initial condition reaction rate than when applying a
shape-preserving filter (similarly to what is observed for
conventional error norms). However, the partitioning of the
reaction rate into Rr, Ru, and Ro reveals that a larger
fraction of the reaction rate is associated with ‘real mixing’
for the shape-preserving scheme than for the unlimited
scheme. Moreover, Ru is less for the shape-preserving
scheme than for the unlimited scheme. The reaction rate
associated with overshooting in the unlimited scheme Ro

is negative so for this particular reaction, Ro cancels errors
in that it reduces the magnitude of R(t = T/2) and thereby
R(t = T/2) is closer to R(t = 0).

These results illustrate that even though the unlimited
scheme is superior in terms of the total reaction rate R(t =
T/2), it is superior for unphysical reasons. The fraction
of the reaction rate associated with unmixing fluid parcels

Copyright c� 2011 Royal Meteorological Society Q. J. R. Meteorol. Soc. 00: 1–13 (2011)
Prepared using qjrms4.cls
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Simple idealized “family of species” test

Lauritzen and 
Thuburn (2010)

This test does not rely 
on an analytical solution! 



Analyzing scatter plots
Analyzing scatter plots

ξ

χ

ξ

χ(max)

ξ

χ(min)

(min)

(max)

Analytical pre-existing functional relationship curve  

⇠ =  (�) = a · �2 + b,

where a and b are constants so that  is concave or convex in
⇥
�(min),�(max)

⇤
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Discrete pre-existing functional relation (initial condition)

⇠k =  (�k ) = a · (�k )
2 + b, k = 1, ..,K ,

where a and b are constants so that  is concave or convex in
⇥
�(min),�(max)

⇤
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Discrete pre-existing functional relation (initial condition)

⇠k =  (�k ) = a · (�k )
2 + b, k = 1, ..,K ,

where a and b are constants so that  is concave or convex in
⇥
�(min),�(max)

⇤
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Analyzing scatter plotsAnalyzing scatter plots

x

j
n

j
n+1

x

A fully Lagrangian model will maintain pre-existing functional relation

�n+1
k = �n

k , ⇠n+1
k = ⇠nk

following parcel trajectories (without ‘contour-surgery’ or other mixing mechanisms)
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Analyzing scatter plotsAnalyzing scatter plots

χ (max)χ

ξ

χ

ξ

(max)

(min)

(min)

ξ

Any Eulerian/semi-Lagrangian scheme will disrupt pre-existing functional relation

⇠n+1
k = T (⇠nj ) 6= a · T

⇣
�n
j

⌘2
+ b, j 2 H

where T is the transport operator and H the set of indices defining the ‘halo’ for T .

Peter Hjort Lauritzen (NCAR) Tracer Advection I August 7, 2012 6 / 20



‘Real’ mixing, e.g., observed during polar vortex breakup 
(Waugh et al., 1997)

‘Real’ mixing, e.g., observed during polar vortex breakup (Waugh et al., 1997)

ξ(min)

(max)

χ

ξ

χ(max)

ξ

χ(min)

‘Real mixing’ (when occurring) will tend to replace the functional relation by a scatter by linearly
interpolating along mixing lines between pairs of points
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‘Real’ mixing, e.g., observed during polar vortex breakup ‘Real’ mixing, e.g., observed during polar vortex breakup (Waugh et al., 1997)

ξ(min)

(max)

χ

ξ

χ(max)

ξ

χ(min)

‘Real mixing’ (when occurring) will tend to replace the functional relation by a scatter by linearly
interpolating along mixing lines between pairs of points
! Ideally numerical mixing should = ‘real mixing’ !

However, it may be shown mathematically that schemes that exclusively introduce ‘real
mixing’ are 1st -order schemes (Thuburn and Mclntyre, 1997).
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Classification of numerical mixing on scatter plots
Classification of numerical mixing on scatter plots

Mixing diagnostics 3

ξ

(min)

(min)

ξ

(max)

ξ

(max)χ χ χ

overshooting

unmixing

range−preserving

unmixing

range−preserving
‘real’ mixing

overshooting

Figure 1. A schematic of the classifi cation of numerical mixing. The
thick solid line is the preexisting nonlinear functional curve (�, (�)).
For each grid point k the numerical transport scheme generates a point
(�k, ⇠k) on the scatter plot. If (�k, ⇠k) is inside the ‘convex hull’ A

(light-shaded area) the numerical mixing resembles ‘real’ mixing in that
scatter points are shifted to the concave side of (�, (�)). Any scatter
point outside A results in numerical unmixing that is classifi ed into two
categories. If (�k , ⇠k) is located to the convex side of  or below the
convex hull but within the range of the initial data (dark-shaded areas
denoted B), the scheme produces umixing referred to as range-preserving
unmixing. Scatter points in neither A nor B produce unmixing referred to
as overshooting.

shape-preserving transport operators will perturb the sum
when transporting the tracers individually. We argue that
the proposed mixing diagnostics are physically motivated
metrics for the issues of interest; they complement the
conventional error norms and may be more appropriate and
useful when choosing a transport scheme for chemical-
transport modelling.

Although these test cases do not require the knowledge
of the analytical solution for the transport problem, we
exercise the mixing diagnostics with a recently developed
idealized flow field which is highly deformational
(Nair and Lauritzen 2010, hereafter referred to as NL10)
and where the analytical solution is known (at the end of
the simulation). Using an analytical flow field and the fact
that the true solution is known facilitates the application
of the multi-tracer mixing diagnostics in transport
scheme development and allows for the computation
of conventional error norms alongside the new mixing
diagnostics. The proposed test cases are illustrated using the
cubed-sphere version of the CSLAM (Conservative Semi-
LAgrangian Multi-tracer) scheme (Lauritzen et al. 2010).
Obviously any global transport scheme on the sphere could
be used for this demonstration.

The paper is organized as follows. In section 2 we
introduce the transport equation and associated notation,
discuss preexisting functional relations and define the new
mixing diagnostics. The idealized test case setup using an
analytical wind field and spatial distributions is described
in section 3. Mixing diagnostics for the idealized test case
suite using the CSLAM scheme are presented in section 4.
Section 5 contains a discussion and conclusions.

2. Method

2.1. Continuous and discretized transport equations

Consider a transport scheme that approximates the solution
to the continuity equation for an inert (no sources or sinks)
and passive (tracer does not feed back on the flow) tracer,

�(��)

�t
+ ∇ · (��V) = 0, � = �, �, � (1)

where � is the air density, V is the flow velocity vector,
and � = �, �, � is the tracer mixing ratio for the different
interrelated tracers considered in this paper. The continuity
equation (1) is written in flux-form; however, the transport
scheme may be based on the continuity equation in another
form (e.g., advective form). To ‘extract’ the mixing ratio �
from (1) obviously requires the solution to the continuity
equation for air density � (see, e.g., NL10 for details). All
analysis in this test case suite is based on mixing ratio � and
not tracer density � �.

Assume that the spatial domain is discretized with N
points/cells so that each point/cell holds mixing ratios �k,
�k, and �k , k = 1, .., N . The range of values taken by �k,
k = 1, .., N at the initial time is denoted [�(min), �(max)]
and similarly for �k and �k.

Let T be the discrete transport operator that advances
the numerical solution for � at grid point k in time

�n+1
k = T (�n

j ), j ∈ H, (2)

where n is the time-level index and H is the set of indices
defining the stencil required by T to update �k . A solution
to (2) requires an initial condition, a specified velocity
field and may also require the solution to the continuity
equation for air density �. In this paper the proposed test
cases are two-dimensional and the diagnostics are described
for the two-dimensional case; but note that the diagnostics
generalize straightforwardly to the three-dimensional case.

2.2. Mixing for a single tracer

Before discussing mixing between tracers, it is interesting
to note that single tracer mixing can be quantified using an
entropy measure

S� = −kB

N�

k=1

�k log �k �k �Ak, (3)

where kB is Boltzmann’s constant and�Ak is the spherical
area of grid cell k. For simplicity we assume a unit sphere
(radius one) for the computation of S�.

If there are no numerical errors, the entropy is
conserved in time. Exact conservation of entropy may
be realized by a fully Lagrangian scheme that tracks
Lagrangian areas through-out the integration. In that case,
�k �Ak is constant at all times for a given Lagrangian cell
k moving with the flow (there is no flux of mass across
the Lagrangian cell boundaries) and following fluid parcels
�k is conserved indefinitely. For other kinds of schemes
truncation errors will change the entropy. Real mixing can
only increase the entropy, and S� is maximized (for a given
total tracer mass) when � is uniform. Typically, transport
schemes tend to smooth gradients in � and there will be a
tendency for S� to increase due to numerical smoothing or
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Figure from (Lauritzen and Thuburn, 2012)

Show animation from idealized test case (Lauritzen and Thuburn, 2012; Lauritzen et al., 2012)
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First-order scheme: only `real mixing’

Preserving pre-existing functional relation between 
tracers under challenging flow conditions

Nair and Lauritzen (2010) flow field



Note: 1. Max value decrease, 2. Unmixing even if scheme is 
shape-preserving, 3. No expanding range unmixing

Preserving pre-existing functional relation between 
tracers under challenging flow conditions



Note: 1. Max value decrease, 2. Unmixing even if scheme is 
shape-preserving, 3. No expanding range unmixing

Preserving pre-existing functional relation between 
tracers under challenging flow conditions



Note: 1. Max value decrease, 2. Unmixing even if scheme is shape-
preserving, 3. No expanding range unmixing

Preserving pre-existing functional relation between 
tracers under challenging flow conditions



What physical properties of the continuous equation of 
motion are important to respect in discretization schemes? 

• Global mass-conservation
• Local mass-conservation (fixers are inherently “bad”)
• Mixing ratio conservation along parcel trajectories
• Shape-preservation is important
• Preserving pre-existing relationships between species

- linear correlation preservation between 2 species
- preserving sum of species (>2)
- quadratic correlation preservation between 2 species

Summary



√∫

More information: http://www.cgd.ucar.edu/cms/pel
Email: pel@ucar.edu

http://www.cgd.ucar.edu/cms/pel
mailto:pel@ucar.edu
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Physics dynamics coupling methods

Advance dynamics core (30 minutes)

Compute physics 
tendencies based 
on dynamics 
updated state

Update dynamics state with 
physics tendencies

For long physics time-steps and less diffusive
dynamical cores this can create spurious noise!

Noise can be detected by computing



Physics dynamics coupling methods

10 year average of             from AMIP run



Physics dynamics coupling methods

Advance dynamics core (30 minutes):
add physics tendency “chunks”
during the dynamics time-stepping
- every 15 minutes in this example
(I refer to it as “dribbling”)

Compute physics 
tendencies based 
on dynamics 
updated state

Split physics tendencies into
a number of “chunks”



Physics dynamics coupling methods

10 year average of             from AMIP run

State updated every 30 minutes“Dribbling” physics tendencies



Physics-dynamics coupling: state update

mx

longitude
0

1

Dynamics
updated 
state

Arrows show physics
tendencies based on
dynamics updated
state

Tendencies are usually designed 
not to drive a tracer field negative
or produce unphysical overshoots



Physics-dynamics coupling: state update
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0

1



Physics-dynamics coupling: “dribbling” tendencies

mx

longitude
0

1
Black curve is solution without
physics tendencies
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Physics-dynamics coupling: “dribbling” tendencies
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Physics-dynamics coupling: “dribbling” tendencies

mx

longitude
0

1
If your model prevents the forcing in
driving the mixing ratio negative in
physics-dynamics coupling then there
will be a spurious source of mass

Note: it is always a source! (biased)


