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@ Continuity equation’s in climate models

@ Desirable properties for transport schemes intended for climate/climate-chemistry applications
@ Mass-conservation, shape-preservation, multi-tracer efficiency, ...
@ Preservation of pre-existing functional relations (correlations) between species

© A semi-Lagrangian view on finite-volume schemes
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Continuity equations in climate models: dry air

Continuity equation for dry air mass

9pd —
—— + V- =0
o +V - (paV) =0,

where V is the velocity field and pg density.
@ Mass of dry air &~ N> (ca. 78.08%), O, (ca. 20.95%), Ar (ca. 0.93%), CO, (at present ca.
0.038%); these well-mixed gases make up 99.998% of the volume of dry air

o Trenberth and Smith (2005) estimated that the mass of dry air corresponds to a surface
pressure of 983.05 hPa and it varies less than 0.01 hPa based on changes in atmospheric
composition.

@ = to a very good approximation there are no source/sink terms on the right-hand side of
continuity equation for dry air.
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Continuity equations in climate models: water

Continuity equations for water species

9 (pam; .
% +v.(pdm’-v): demﬁ

where m; are dry mixing ratios? and P represent source and sink terms.

@ m;: water vapor, cloud liquid and cloud ice.

@ 99% of the total weight of the atmosphere is the mass of dry air. The remanding 1% is
approximately the mass of water (large local variations though!)

@ m;: Meso-scale models also have prognostic rain, snow, graupel, ...

o If rain, snow, graupel, etc. are diagnostic it is assumed that they fall to the ground in one physics
time-step!

?the subtleties between using ‘dry’ and ‘wet’ mixing ratios is not discussed here - see, e.g., Lauritzen et al.
(2011b)
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Continuity equations in climate models: water
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Very ‘oscillatory’ fields:

@ Production/loss terms are large, however, clouds (e.g., ‘ice clouds’ such as Cirrus) can have
lifetimes on the order of days

@ Transport operator must not produce negative values.
@ Overshooting in water vapor, for example, can trigger irreversible physical processes.

In other words: the transport scheme should be shape-preserving with respect to q.
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Continuity equations in climate models: aerosols

@ Microphysics: continuity equations for aerosol number and mass concentrations

o CAMS5 physics: 22 aerosol continuity equations (particulate organic matter, dust, sea salt, secondary
organic aerosols, ...)

Small aerosol # concentration in surface layer (#/1e10)/kg
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Continuity equations in climate models: chemistry

o Chemistry: continuity equations for chemical species

o CAM-chem: approximately 127 continuity equations (ozone, chlorine compounds, bromine, ...

some highly reactive and some long-lived

Grid-box averaged BRO at level 6 (54.6 hPa) 10e-12 kg/kg . latitude = 44.5263 lev=6
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Figure: Bromine has a strong diurnal cycle (produced by photolysis)
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Continuity equations in climate els: desirable properties

Important properties of transport schemes intended for atmospheric models:

@ The number of prognostic continuity equations in climate and chemistry-climate models is
increasing fast to accommodate more advanced physical parameterizations (e.g.,
microphysics), online chemistry, ....

= multi-tracer efficiency is becoming increasingly important
(closely tied to compute platform)!

o Atmospheric tracer fields can have very large gradients:

e Shape-preservation is paramount!

o Preservation of gradients is important

@ Inherent conservation of mass is desirable, in particular, to consistently enforce
shape-preservation and tracer-air mass consistency.

@ Optimal preservation of pre-existing functional relationships (correlations)
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Assume a square Cartesian mesh in two dimensions
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The reformulation of global climate/weather/chemistry models for

massively parallel computer architectures + mesh-refinement applications

Traditionally the equations of motion have been discretized on the traditional regular latitude-
longitude grid using either

@ spherical harmonics based methods (dominated for over 40 years)
@ finite-difference/finite-volume methods (e.g., CAM-FV)
Both methods require non-local communication:
@ Legendre transform
@ ‘polar? filters’ (due to convergence of the meridians near the poles)

respectively, and are therefore not "trivially” amenable for massively parallel compute systems.

dconfusing terminology: filters are also applied away from polar regions: 6 € [+36°, 4-90]

Rectangular computational space
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The reformulation of global climate/weather/chemistry models for
massively parallel computer architectures + mesh-refinement applications
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@ Quasi-uniform grid + local numerical method = no non-local communication necessary J

CESM1 F1850, ATM component, BGP

Performance in through-put for different dynamical cores
in NCAR'’s global atmospheric climate model:
horizontal resolution: approximately 25km X 25km grid boxes

e EUL = spectral transform (lat-lon grid)

e FV = finite-volume (reg. lat-lon grid)
o SE = spectral element (cubed-sphere grid)

Computer = Intrepid (IBM Blue Gene/P Solution) at Argonne National Laboratory

Simulated Years/Day
®

o 1K 4K 16K 64K 256K
NCORES

Note that for small compute systems CAM-EUL has SUPERIOR throughput!!
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Prediction Across Scales
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spectral-elements




Dale R. Durran

TEXTS IN APPLIED MATHEMATICS

Numerical Methods

for Fluid Dynamics

With Applications to Geophysics
Second Edition

@ Springer

| am going to give a (non-conventional) semi-Lagrangian view on finite-volume discretizationJ
schemes!
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Derivation form

‘Most fundamental equations in fluid dynamics can derived from first principles in either a Eulerian
form or an Lagrangian form’ - (see, e.g., text book of Durran, 2010) J

Lagrange
//—>

Euler

Figure courtesy of J. Thuburn.
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Derivation form

Consider the continuity equation for some inert (no sources/sinks) and passive (does not feed
back on the flow) tracer

semi-Lagrangian form Eulerian (flux) form

\»

For simplicity assume a quadrilateral mesh (two dimensions) and leave out the ‘details’ of spherical
geometry.

o At first, I'll only consider two-time-level (‘area-integrated’) finite-volume schemes
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Finite-volume approach: Integrate over control volume

semi-Lagrangian form Eulerian (flux-form) form

@ | (b)

A e

Al [ AFF
jmam

@

- AT
%

(©

D
= / wdA=0.
Dt Jaw) Integrate
where A(t) is a Lagrangiant control %
volume, +V.-(¥v)=0
ot
D o . .
— = — +V.V, over an Eulerian control volume Aj:
Dt ot
5] -
is the material /total derivative and 5 w dA +/ V.- (V) dA=0.

% = pam.

fvo\ume whose bounding surface moves with the local fluid velocity <> volume which always contains the same material particles
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Finite-volume approach: Integrate over control volume

semi-Lagrangian form Eulerian (flux-form) form

@ | )

A 2

2 i i

\_
s
AN
AR
\z

© | @

e ™
PO TR

2]
Dt J )

YdA=0.

Apply divergence theorem on second term:
where A(t) is a Lagrangian® control

volume, 2 P dA + 5{ (xpV)-AdS =0,
ot Ja, Joa,
D 8 v
Dt ot Ty, where Ay is the boundary of Ay and A

the outward normal vector to 0Ag.
— instantaneous flux of tracer mass
through boundaries of Ay
.
T

volume whose bounding surface moves with the local fluid velocity <> volume which always contains the same material particles

is the material /total derivative and
P = pam.

Peter Hjort Lauritzen (NCAR)

Discretization strategies

August 13, 2018 8/23



Finite-volume approach: Integrate in time

semi-Lagrangian form Eulerian (flux-form) form

@ | )

A 5

A |
%

A

s

© | @

] |4
T TR

A

\<

/ dA= [ pdA,
A(t+At) A(t) Apply divergence theorem on second term:

where At is time-step and t = n At. Pt
—/ o dA + (¥ V)-i7dS =0,
ot Ja, dA,

Upstream semi-Lagrangian approach:

—n+1 —n where OAy is the boundary of Ay and A
DA =FRA k y ot ok
Yk k= ViAak, the outward normal vector to OA.

where () is average value over cell. — mstantaneous. flux of tracer mass
through boundaries of Ay
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Finite-volume approach: Integrate in time

semi-Lagrangian form Eulerian (flux-form) form

@ | )

A ~ JZam

© | @

At
B he=

P dA = ) dA, 9 dA % b7 FdS —
/A(t+At) At) ot Akw +-6Ak (V) 7dS =0,

where At is time-step and t = n At.

—n+1 —n
Upstream semi-Lagrangian approach: P TAA =Y AA+

—n+1 —n e
Yy AAg = P Aay, /A é»\ (V) -AdS | dt =0,
nAt k

where () is average value over cell. .
( g — flux of tracer mass through boundaries

of Ay during t € [nAt, (n+ 1)At]
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Finite-volume approach:

semi-Lagrangian form Eulerian (flux-form) form

@ | )

Ay e

Il s
au

© | @

Ac
a3

1=

\T
{

VRN
\

/ Y dA = Y dA, . _ 4
Al A G A= T AA- YT,
where At is time-step and t = n At. =1
where
Upstream semi-Lagrangian approach:
_ F("’ — 7') / n x
T AA = TiAa, A

where 6 is average value over cell. is flux of mass through face 7 during At,

and s,(:) = =ell

for simplicity assume s7 is NOT multi-valued; for multi-valued case see, e.g., Harris et al. (2010).
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Finite-volume approach:

semi-Lagrangian form Eulerian (flux-form) form

@ | )

agl [ AFT
%

© | @

A s
P [ HeR

—n-+1 —n
i AAL = PrAay,

4
—n+1 = T
T AA= P AA - R,

=1

v
Note equivalence between Lagrangian cell-integrated and Eulerian flux-form continuity equations:
4
M-S (sf) Aa([)) = Aay.
T=1
i.e. the areas involved in Eulerian forecast equals upstream Lagrangian area aj. )
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Finite-volume approach:

semi-Lagrangian form Eulerian (flux-form) form

@ | )

—n+1 —n
Y AAx = P Aag,
) © | @
Define a global piecewise continuous z z
reconstruction function

Y
{
YA

N
w(xvy) = Z lAkwk(Xzy)’
k=1

4
—n+1 _ =i (7)
AA =, DA — F,
where 4, is the indicator function wk k=Y , TZ:1 ko
17 (X7y) € Ak7
Ia, =
07 (X7y) ¢ Ak'
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Finite-volume approach:

semi-Lagrangian form Eulerian (flux-form) form

(b)

Ay 7 Ay

o)

—n+1 —n
Y TAA = P Aay,

© | @

Ax
ap=>

Ly
G aac=Y" [ uicy)da JZum
0=1" ke

where ayy is the non-empty overlap area

S
4

7/
A S
T

AVANEIRA VAN

G
Axt

4
—n+1 —n T
Di DA = AA- D FT,
T=1

ake =akNAg, ae#0; £=1,..., L,

where N is the number of cells in the
domain and L, number of overlap areas.
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Finite-volume approach:

semi-Lagrangian form Eulerian (flux-form) form

() @ ! ()

v Py [ e s if{

© | @

T
7n+1AA ) 7nA (? A (—ﬁ A
wk k = wk ak, Z}/@ % 2 At

Ly
—n+l 4
v AAg = / Pi(x,y) dA. —nt1 _ (r)
K 2 [, Vi) A
—
where aiy is the non-empty overlap area -
"
ake =akNAg, ae #0; L=1,... L, F{) = Z/ PI(x,y) dA,
£=1" ke

where N is the number of cells in the

. o e
domain and Ly number of overlap areas. where L7 is number of non-empty ‘flux

overlap areas for face 7.

Note that in general: L, < 21:1 L(kT)
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Finite-volume approach: Conditions for inherent mass-conservation

semi-Lagrangian form Eulerian (flux-form) form

(b) | @ i (b)
e 4, - A ar? %
A i k K g

(©) | (@)

Ac
2t

DiAA = PpAay, JZu

7/ n
g

\_
{
YA vy

@ ay's span Q without gaps/overlaps 4
il _
Ti AA= P AA - FT,
N =1
Jak=9, and ax Nag =0V k # L.
k=1 @ Fluxes for ‘shared’ faces must cancel,
e.g.,
@ Sub-grid-scale representation of v & (3) (1)
: F,”7 = —F,
must integrate to cell-average mass k k=1
/ Pi(x,y) dA = @ZAA’ Any flux, even highly inaccurate fluxes,
Ax will NOT violate mass-conservation!
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Finite-volume approach: Reconstruction methods for p and m

semi-Lagrangian form Eulerian (flux-form) form

(b) Picewise-parabolic reconstruction

(b) Picewise-parabolic reconstruction exact

PEMtfilter

exact —— 4

PP
4 PRMtfilter

Density

Density

@ Inherently mass-conservative PPM
(piecewise parabolic method)

@ Inherently mass-conservative PPM i
(piecewise parabolic method) (Colella and Woodward, 1984)
reconstruction )
@ or variants thereof (PLM, PQM,

(Colella and Woodward, 1984)

@ or variants thereof (PLM, PQM,
PSM, ...)

PSM, ...)

@ Any non mass-conservative
reconstruction /interpolation method

v

Note: the higher the order of the polynomial the more extrema (possible over- and under-shoots)
= the harder it is to make polynomial shape-preserving (PPM strikes a good balance!)

August 13, 2018 8/23
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Finite-volume approach: Enforcing shape-preservation

BAD NEWS!
o (Godunov, 1959): only 15t-order methods are inherently shape-preserving/monotone =
higher-order methods need filters for shape-preservation!
@ We need to be careful: filter can violate tracer-tracer correlations (e.g., positive definite
limiter!
@ Also, limiters/filters are inherently non-linear (lots of if-statements in the code) = ‘bad’ for
code optimization (e.g., vectorization); limiter can easily be 50% tracer transport cost!

o If your unlimited scheme is ‘super duper’ accurate (for example, very high order) and you use
a ‘crappy’ limiter = scheme ultimately becomes ‘low’ order

v

semi-Lagrangian form Eulerian (flux-form) form
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Finite-volume approach:

semi-Lagrangian form Eulerian (flux-form) form

(b) Picewise-parabolic reconstruction

=— no filter

I_ — monotone filter
|

Shape-preservation can be enforced by

@ blending monotone and high-order
fluxes (e.g., Flux-Corrected Transport Zalesak, 1979)

Density

The only direct way of enforcing
shape-preservation is to filter the
sub-grid-scale distribution 7 (x, y):

e 2D filter (Barth and Jespersen, 1989)

@ 1D filters for dimensionally split
schemes WARNING: may not be

o fully 2D filters (Barth and Jespersen, 1989) . .
) shape-preserving for diagonal flow!
e 1D fllters fOI’ cascade schemes (Colella and Woodward, 1984; Lin and Rood, 1996)
(Colella and Woodward, 1984; Zerroukat et al., 2005; Lin .
YR o WENO-type schemes (selective
and Rood, . .
limiting; Liu et al., 1994)
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Finite-volume approach: Area approximation

(a) (b) @ | () s
T | | T
PR e\
arl | |1
= PR

o

(a) Exact

(b) Straight lines (Ranzic, 1992; Lauritzen et al., 2010)

(c) Step-functions for ‘North/South’
faces & straight lines parallel to
‘longitudes’ for ‘East/West' faces
(Nair and Machenhauer, 2002).

(d) Cascade (flow-split)

(Nair et al., 2002; Zerroukat et al., 2002)

N
=

(g-k) Quadrilateral flux-areas (Dukowicz and
Baumgardner, 2000; Harris et al., 2010)

(I) *Effective’ departure area
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Finite-volume approach: Area approximation

(a) (b)

® | () L

=
ag

I
%
i
=

O] (k)
=
(Ej‘fﬁ} l_j‘%/ _
U T

(a = =
(a) Exact & .
(b) Straight lines (Ranzic, 1992; Lauritzen et al., 2010) Lo
(c) Step-functions for ‘North/South’

faces & straight lines parallel to
‘longitudes’ for ‘East/West' faces
(Nair and Machenhauer, 2002).

(d) Cascade (flow-split)

(Nair et al., 2002; Zerroukat et al., 2002)

(g-k) ‘Curved’ (parabolic) flux-areas
(Ullrich et al., 2013)

(1) ‘Effective’ departure area
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Finite-volume approach: Area approximation

(a) (b)

@ | ®) =

@ (e)

Y\
5
\
AN YT
\J
\

® -
i =d g
(a) Exact { 2y ’% —
(b) Straight lines (Ranti¢, 1992; Lauritzen et al., 2010) =]
(c) Step-functions for ‘North/South’

faces & straight lines parallel to

‘longitudes’ for ‘East/West' faces
(Nair and Machenhauer, 2002). (g-k) Parallelogram flux-areas (Miura, 2007;

(d) Cascade (ﬂOW-Split) Skamarock and Menchaca, 2010)
(Nair et al., 2002; Zerroukat et al., 2002) (1) ‘Effective’ departure area
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Finite-volume approach: Area approximation

(a) (b)

(a) Exact
(b) Straight lines (Ranzic, 1992; Lauritzen et al., 2010)

(c) Step-functions for ‘North/South’
faces & straight lines parallel to
‘longitudes’ for ‘East/West' faces
(Nair and Machenhauer, 2002).

(d) Cascade (flow-split)

(Nair et al., 2002; Zerroukat et al., 2002)

(a) P D M A (b) P DM’
L ", £ L H1
o clN B 4
IS G
7 F B
© | () |
[

Figure from Machenhauer et al. (2009)

(a-c) Dimensionally split scheme
(Lin and Rood, 1996):
Flux-areas area combinations of
rectangles aligned with grid lines

(d) ‘Effective’ departure area
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Finite-volume approach: Geometric and reconstruction errors

P
<7 7 7
P e
A ) s e
L[]

Geometric error Reconstruction error

@ ‘geometric error’: how well is the upstream Lagrangian area / flux areas approximated

@ ‘reconstruction error’: how well is the sub-grid-scale distribution approximated
Typically:

o for lower-order reconstruction functions the ‘reconstruction error’ > ‘geometric error’

o the smaller the Courant number (At) the smaller the ‘geometric error’

o for higher-order reconstruction functions and shear flows (deformational) the ‘geometric
error’ can be significant (Ullrich et al., 2013)
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Further simplifications for flux-form approaches (vargoin and shashkov, 2003) = %‘Xt <1/2

Recall: we can do anything we want with the fluxes as long as F,E?’) = —F,El_)l

‘Rigorous’ flux for face 1 (7 = 1):

ay) 3
s =3 / Ui (x,y) dA.
£=1" ke

al For At sufficiently small:

Aayr > Aayy and Aagy > Aags

— simplify flux-integration by only using one
O upstream reconstruction function:

FY ~ F = / P5(x,y) dA.
ak1YakaUags

1y is extrapolated over a;; and a;3.

@ note: the search for overlap areas has almost been eliminated in .7-',51)
° .7-',21) stable for Courant numbers approximately less than % (Aagy > Aapy + Aay3)

° .7-',51) can be slightly more accurate than F‘Sl) (Lauritzen et al., 2011a)
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Eulerian flux-form schemes: Non-geometric/non-Lagrangian approaches

@fgﬁ%ﬁms i Transport - Weighted Sums?

3rd and 4th-order fluxes (e.g. WRF):
1 1, 5
F(U~,1/1)i+1/2 = Uit1/2 [5 (Vi1 + i) 12 (5i¢i+1 + 5;#’1‘) + sign(u) % (‘5211)144 - 521/11)]
where 521/11- = i1 — 2¢; + iy (Hundsdorfer et al, 1995; Van Leer; 1985)

2,
Recognizing 62y = Az2% +0(Az")  we recast the 3rd and 4th order flux as

1 1 (0% 0
F(u,¥)it1/2 = uiy12 [5 (Yix1 + ) —Aziﬁ {(Tﬁ) . + (6_;2}> }
i+ i

gt 8 [ (PV) (0%
+ sign(u) Az 2 {(512)i+1 - (azg .
where x is the direction normal to the cell edge and i

and i+/ are cell centers. We use the least-squares-
fit polynomial to compute the second derivatives. “
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Eulerian flux-form schemes: Non-geometric/non-Lagrangian approaches

Flux divergence, transport, and
Model for Prediction Across Scales Runge—Kutta tlme integral‘ion

ey),
ot

Scalar transport equation for cell i:

- L(Vpp) = =1 Dd oV i)

1. Scalar edge-flux value y is the weighted sum
of cell values from cells that share edge and
all their neighbors.

2. An individual edge-flux is used to update the
two cells that share the edge.

3. Three edge-flux evaluations and cell updates
are needed to complete the Runge-Kutta

timestep. A
. t
. _ . (P9)" =(p¥)" + 5LV, p, ")
4. Shape-preserving (monotonic) constraint
i i o At
requires (.:h'ecklng the cell Yalue update and ()™ =()t + 22 L(V, p,0%)
renormalizing edge-fluxes if the cell updates 2

are outside specific bounds (on the final RK3

update). (p0)HA =(ph)t + At L(V, p, ™)
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Time-stepping and coupling: stability

The n-coordinate atmospheric primitive equations, neglecting dissipation and forcing terms:

ov 1, ov  RT,
- f = (0] = 1
8t+(<+) +V(2v+ )+ Tom T Vp=0 (1)
a—+v VT +7n OT _RTv,, o (2)
ot Ton 5P
a9 (Op op _, ) 0 ( Bp)
V- — (=) =0 3
ot (3n> - (an “aon oy )
+V- +—(n=q) =0. 4
877 877 on nan ( ))

o Continuity equation for air is coupled with momentum and thermodynamic equations:

@ thermodynamic variables and other prognostic variables feed back on the velocity field
@ which, in turn, feeds back on the solution to the continuity equation.
@ Hence the continuity equation for air can not be solved in isolation and one must obey the maximum allowable time-step restrictions imposed

by the fastest waves in the system.
@ The passive tracer transport equation can be solved in isolation given prescribed winds and

air densities, and is therefore not susceptible to the time-step restrictions imposed by the
fastest waves in the system.
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Time-stepping and coupling: consistency

Continuity equation for air density pgy

Opd _
— +V. =0, 1
24V (pa ) &)
and a tracer with mixing ratio g
9(pd q =
P49) 4 9 (pyai) =0, @)

@ In continuous space:
g = 1 = continuity equation for (p4 q) reduces to continuity equation for air (pg)
o It is considered desirable that discretization schemes obey this relation:

‘free-stream’ preserving or ‘consistent’ tracer transport.

@ Note: ‘complete consistency' is obtained if air density and tracer mass continuity equations
are solved using the same numerical method, on the same discretization grid, and using the
same time-steps (everything is ‘in sync’!).
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Time-stepping and coupling:

semi-Lagrangian form Eulerian (flux-form) form
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Time-stepping and coupling: mass-conservative semi-implicit approach

Traditionally: semi-Lagrangian advection of py is combined with semi-implicit time-stepping:

At

+1)exp >

/TdZJr:L (par —pdoo (V- V" + V"7£+l)v

where
@ pdoo @ constant reference density
@ ()exp is the explicit prediction

o vt velocity extrapolated to time-level (n+1)

v
What about tracers?
@ Solving continuity equation for (pg q) explicitly
Pd mk+ AAk = pPd mkAak
is NOT ‘free-stream’ preserving!
o Using ‘traditional’ semi-implicit approach for tracers
7mn+lAA — 5:m"Aa _E( ) V.V"Jrl_v.\:/’"Jrl
pd My k = Ppd MA3k — —=(pd G)oo ph )
is problematic (Lauritzen et al., 2008).
v
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Time-stepping and coupling: mass-conservative semi-implicit approach

Traditionally: semi-Lagrangian advection of py is combined with semi-implicit time-stepping:
P = ™) o~ o AV (G 7] - V- (@i 7]}

where

@ pgop @ constant reference density
@ (-)exp is the explicit prediction

o ¥t velocity extrapolated to time-level (n+ 1)

What about tracers?

@ A solution is to formulate the semi-implicit terms in flux-form

1) e = 5 (V- [Gam) 7] - V- ()., 741}

so that reference states are eliminated (wong et al., 2013)

Pd mk = (pd my

Peter Hjort Lauritzen (NCAR) Discretization strategies August 13, 2018 14 / 23



Time-stepping and coupling: Eulerian flux-form

flow direction

time

For efficiency, sub-cycle dynamics with respect to tracers:

@ Solve continuity equation for air py together with momentum and thermodynamics
equations.

Repeat ksplit times

@ Brown area = average flow of mass through cell face.

Compute time-averaged value of m across brown area using flux-form scheme: < m >.

Flux of tracer mass: < m > X zksp/'f n+i/ ksplit

o Yields ‘free stream’ preserving solution!
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Time-stepping and coupling: Eulerian flux-form

flow direction

time

}u”At«j

For efficiency, sub-cycle dynamics with respect to tracers:

@ Solve continuity equation for air pg together with momentum and thermodynamics
equations.

Repeat ksplit times

@ Brown area = average flow of mass through cell face.

Compute time-averaged value of m across brown area using flux-form scheme: < m >.

Flux of tracer mass: < m > X zksp/'f n+i/ ksplit

o Yields ‘free stream’ preserving solution!
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Time-stepping and coupling: Eulerian flux-form

flow direction

n+2/4
P niua

time

»u””mAt%u”At«j

For efficiency, sub-cycle dynamics with respect to tracers:

@ Solve continuity equation for air py together with momentum and thermodynamics
equations.

Repeat ksplit times

@ Brown area = average flow of mass through cell face.

Compute time-averaged value of m across brown area using flux-form scheme: < m >.

Flux of tracer mass: < m > X zksp/'f n+i/ ksplit

o Yields ‘free stream’ preserving solution!
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Time-stepping and coupling: Eulerian flux-form

flow direction

time

~u"+2/4At~§-u"+U4At»§~u"Atﬁj

For efficiency, sub-cycle dynamics with respect to tracers:

@ Solve continuity equation for air py together with momentum and thermodynamics
equations.

Repeat ksplit times

@ Brown area = average flow of mass through cell face.

Compute time-averaged value of m across brown area using flux-form scheme: < m >.

Flux of tracer mass: < m > X zksp/'f g/ Kplit

o Yields ‘free stream’ preserving solution!
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Time-stepping and coupling: Eulerian flux-

flow direction

time ¥

n+]J4At uAt '

For efficiency, sub-cycle dynamics with respect to tracers:

@ Solve continuity equation for air py together with momentum and thermodynamics
equations.

Repeat ksplit times

@ Brown area = average flow of mass through cell face.

Compute time-averaged value of m across brown area using flux-form scheme: < m >.

Flux of tracer mass: < m > X zksp/'f n+i/ ksplit

o Yields ‘free stream’ preserving solution!
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Time-stepping and coupling: Eulerian flux-

flow direction

time §

n+]J4At uAt '

For efficiency, sub-cycle dynamics with respect to tracers:

@ Solve continuity equation for air py together with momentum and thermodynamics
equations.

Repeat ksplit times

@ Brown area = average flow of mass through cell face.

Compute time-averaged value of m across brown area using flux-form scheme: < m >.

Flux of tracer mass: < m > X zksp/'f n+i/ ksplit

o Yields ‘free stream’ preserving solution!
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Figure courtesy of David Hall (CU Boulder).
Sigma layers at the bottom (following terrain) with isobaric (pressure) layers aloft.
Pressure at model level interfaces

Pr+1/2 = Aky1/2 Po + Biy1y2 ps,

where ps is surface pressure, pg is the model top pressure, and Ak+1/2(€ [0:1]) and
Bi41/2(€ [1:0]) hybrid coefficients (in model code: hyai and hybi). Similarly for model level
mid-points.

Note: vertical index is 1 at model top and klev at surface.
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Vertical coordinate: hybrid sigma (o = p/ps)-pressure (p) coordinate

Why do we use terrain-following coordinates?

7777,

Figure: Representation of a smoothly varying bottom (dashed line) in (left) a terrain-following coordinate
model, and (right) a height coordinate model with piecewise constant slopes (cut-cells, shaved-cells)

Figure is from Adcroft et al. (1997).

— The main reason is that the lower boundary condition is very simple when using terrain-following
coordinates!
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Aside: hybrid sigma (o0 = p/ps)-pressure (p) coordinate

While terrain-following coordinates simplify the bottom boundary condition, they may introduce

errors:
o Pressure gradient force (PDF) errors: inz = ivnp 4 i%vnz, (Kasahara, 1974)
where py is density, p pressure and z height.

o Errors in modeling flow along constant z-surfaces near the surface

15 > . . , . .
> r t4 t2 1
10 - L i
E L r 4
R N [ 1
N L L A
5 > - -
0 u .75 -50 -25 0 25 50 75

u [m/s] x [km]

FIG. 4. Vertical cross section of the idealized two-dimensional advection test. The topography is located
entirely within a stagnant pool of air, while there is a uniform horizontal velocity aloft. The analytical solution
of the advected anomaly is shown at three instances.
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Aside: hybrid sigma (o0 = p/ps)-pressure (p) coordinate

While terrain-following coordinates simplify the bottom boundary condition, they may introduce
errors:

o Pressure gradient force (PDF) errors: inz = iv,,p 4 gl

& Vnz, (Kasahara, 1974)
pd dz
where py is density, p pressure and z height.

@ Errors in modeling flow along constant z-surfaces near the surface

b
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Schar et al. (2002)
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Aside: hybrid sigma (o0 = p/ps)-pressure (p) coordinate

While terrain-following coordinates simplify the bottom boundary condition, they may introduce
errors:

i .1 1 14
o Pressure gradient force (PDF) errors: EVPZ = Evnp + Eivnz, (Kasahara, 1974)

where py is density, p pressure and z height.

@ Errors in modeling flow along constant z-surfaces near the surface

15000 T T T T T

10000 |—

sooo  j—

: \
275066 ~so000 ~Z5000 ° 25060 55665

Schér et al. (2002)
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Vertical coordinate

o Lagrangian (‘floating’) vertical coordinate £ so that

d_ o
dt

i.e. vertical surfaces are material surfaces (no flow across them).

Figure shows ‘usual’ hybrid o — p vertical coordinate n(ps, p)
(where ps is surface pressure):

@ 7(ps, p) is a monotonic function of p.
° n(PS: Ps) =1

o 71(ps,0) =0
- —— @ 15(ps;Ptop) = Mtop-

— Boundary conditions are:

o dnps:ps) _

dt
d 'Sy O
e . ° ﬂ(PdtPr p) = W(Ptop) =0

(w is vertical velocity in pressure coordinates)
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Vertical coordinate

o Lagrangian (‘floating’) vertical coordinate £ so that

o
dt

i.e. vertical surfaces are material surfaces (no flow across them).

Figure:

@ set £ =1 at time tstarr (black lines).

o for t > tstarr the vertical levels deform as they move
with the flow (blue lines).

@ to avoid excessive deformation of the vertical levels
—_ (non-uniform vertical resolution) the prognostic
R variables defined in the Lagrangian layers £ are
. periodically remapped (= conservative interpolation)

e N back to the Eulerian reference coordinates 1 (more on
this later).

Why use floating Lagrangian vertical coordinates?
Vertical advection terms disappear (3D model becomes ‘stacked shallow-water models’; only 2D
numerical methods are needed)
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Local Galerkin methods: Spectral-element method

The spectral-element method:
discretization grid

Panel /4 Element
— Q, .
X
=-n/4 X +n/4
Physical Domain Computational Domain GLL Quadrature Grid
Nodal 1D polynomial basis functions
- /\ GLL=Gauss-Lobatto-Legendre
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Local Galerkin methods: Spectral-element method

The spectral-element method:
discretization grid

m Panel /4 Element

For any arbitrary variable f (e.g., T, u, v, p, ...) one can approximate f as
a function of a tensor product of 1D basis functions on the 2D GLL grid:

F(x,y) = 2 fiihi(xi)hi(y)),

where f;; is grid point values of f.

Fnysicar vomain ‘Compurtationar vomain ULL yuaarature Gra

Nodal 1D polynomial basis functions
A GLL=Gauss-Lobatto-Legendre

A

August 13, 2018
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Local Galerkin methods: Spectral-element method

The spectral-element method

Spectral-Element Method (SEM)

NAV4
. 4 A \ A

(xi» y;)
o

Continuity equation for Ap:

OBP _ . Api + V4 Drp.

ot
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Local Galerkin methods: Spectral-element method

The spectral-element method

Spectral-Element Method (SEM)

BAV
. LA \ A

(xi» ;)
o

Continuity equation for Ap:
) = (=9 i) + (i, 79
where (hy,-) is inner product

(ks £) = 3 wijhi(xi i) F (xi, ) ~ [ ik dA.
isj
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Local Galerkin methods: Spectral-element method

The spectral-element method

Spectral-Element Method (SEM)

(xi» ;)
o

Continuity equation for Ap:

* n
<hky Ap Ap

~ ) = (hio -V - Dp¥) + (i, TV*Ap) .

Temporal discretization: multi-stage Runge-Kutta time-stepping
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Local Galerkin methods: Spectral-element method

The spectral-element method

(a) (b) (©)
. Ap” : Ap* : Ap™!

Continuity equation for Ap:

* n
<hky Ap Ap

At ) = (hg,-V - Apv) + (hk,TV4Ap).

Temporal discretization: multi-stage Runge-Kutta time-stepping
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Local Galerkin methods: Spectral-element method

The spectral-element method

(a) (b) ()
’ Ap” : Ap* : Ap™!

@ Projection step
Ap™! = DSS (Ap*)
where DSS refers to Direct Stiffness Summation (also referred to as
assembly or inverse mass matrix step).

@ Choice of GLL quadrature based inner product and nodal basis
functions gives a diagonal mass matrix (Maday and Patera, 1987).

Global Dynamics
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Local Galerkin methods: Spectral-element method

The spectral-element method

(a) (b) ()
’ Ap” : Ap* : Ap™!

Continuity equation for Ap:

A n+1_A n
(hk,u

A ) = (hk,~V - ApV) + (he, 7V* Ap) + (hx, D) .

Temporal discretization: multi-stage Runge-Kutta time-stepping
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CAM-SE-CSLAM (Herrington et al., 2018) - will be released with CESM2.1

CAM-SE has the option to run physics on a finite-volume grid that is coarser, same or finer
resolution compared to the dynamics grid. This configuration uses inherently conservative CSLAM
(Conservative Semi-LAgrangan Multi-tracer) transport scheme (Lauritzen et al., 2017).

Lander and Hoskins (1997):
only pass “believable”
scales to physics!

Coarser physics grid Finer physics grid
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Summary

semi-Lagrangian form

Pros:

@ allow for long time-steps: At limited
by flow deformation (Lipschitz
number and not by Courant number)

@ less MPl communication; but more
data to communicate

@ geometric computations (weights)
can be re-used for each additional
tracer (multi-tracer efficiency)

@ Lagrangian consistency
Cons:

o Lagrangian areas must span sphere
without cracks/overlaps; and must
find overlap areas (complex search
algorithm)

@ hard to extend to 3D (use Lagrangian

vertical coordinate)

Eulerian (flux-form) form

Pros:

o fluxes can be computed in ‘any’ way
(Lagrangian consistency not needed)

o many flux limiters in the literature
(that said, FCT-type limiters need
extra MPIl communication)

@ one can easily switch between
time-stepping methods
o if flux computation is ‘simple’ then
easy to extend to 3D
Cons:

@ not stable for long time-steps
(Courant number limited)

@ more frequent MPI communications
(each Runga-Kutta step; but less
data to communicate compared to
semi-Lagrangian schemes)

A standard test case suite for two-dimensional linear transport on the sphere: results from a
collection of state-of-the-art schemes. - Lauritzen et al. (2014)
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