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Lightning NO
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Some	regions,	e.g.	the	Arctic,	require	unique	considerations	…

C.S. Law et al., Environ. Chem., 2013
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P. Young et al., Elementa, 2017

Simulating	tropospheric	ozone
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Chemistry:
gas-phase kinetics, 

photolysis, 
aerosol formation, 

heterogeneous reactions

Surface Emissions 
Anthropogenic
Biomass burning

Land / Ocean / Snow / Ice

Transport:
Advection

boundary layer mixing, 
diffusion

Vertically-
distributed 
Emissions 

Aircraft (NO, BC)
Lightning NO

Dry DepositionBiogenic
Emissions

Cloud Processes:
Convective transport
Aqueous chemistry

Wet deposition

Computer	models	treat	each	process	as	a	separate	module
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For	each	compound,	at	each	timestep,	the	change	in	concentration	is	the	
sum	of	the	change	in	concentration	for	each	process:

Ei:	Emissions	
Ci:	Gas-phase-Chemistry	
Ai:	Aerosol-processes
Ti:	Advection	+	Diffusion	
Wi:	Cloud-processes	(wet	deposition)
Di:	Dry	deposition

For	compounds	with	short	lifetimes	the	order	of	operators	can	affect	
results
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https://www.nps.gov/subjects/air/sources.htm
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Anthropogenic	emissions

• Power	plants	(NOx,	SO2)
• Industry	(solvents	– VOCs)
• Traffic	(NOx,	CO,	PM)
• Residential		heating	(CO,	VOCs,	PM)
• Agriculture	(NH3)
• Shipping	(NOx,	HCs)
• Aviation	(NOx)
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Many	emissions	inventories	at:		http://eccad.aeris-data.fr/
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CEDS (0.5deg) - 1950

CEDS - 2014

EMEP Europe (0.5 deg) - 2010

REAS2.1 Asia (0.25deg) - 2008

Anthropogenic	NOx Emissions	– various	inventories
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Images from: http://eccad.aeris-data.fr/



Large	differences	between	inventories
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Granier et al., Climatic Change, 2011



• Wildfires
• Prescribed	burns	(forest	understory)
• Agricultural	burning
• Trash	burning
• Residential	burning	of	biofuel

Biomass	burning
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Large seasonal variability
• Natural wet/dry season
• Agricultural activity

Large inter-annual variability 
due to climate

Large uncertainties in 
• What is burned
• How much is burned
• Emission factors

Wiedinmyer et al., GMD, 2011

Natural	
and	

Anthropogenic



Fire	emissions	models	(e.g.,	FINN)
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Emissions(i)	=	f(A(x,t),	B(x,t),	Ef(i))
For	compound	i,	location	x,	time	t:
• A(x,t):	Area	burned
• B(x,t):	Biomass	burned	(kg-biomass-burned/area)
• Ef:	Emission	factor	for	each	chemical	compound
(mass-emission-species/kg-biomass-burned)
• type	of	vegetation	(ecology)
• fuel	characteristics	(amounts	of	each	type	of	biomass)
• fuel	condition	(moisture	content)

Input	data	sets
• MODIS	Thermal	Anomalies	(Fire	counts)
• Land	cover	maps	(from	MODIS	and	SPOT)

FINN CO emissions 2018-08-11

Other inventories use 

similar algorithms

Some use Fire Radiative 

Power satellite obs

Different landcover 

maps, emission 

factors, etc.



Differences	in	fire	inventories
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• FINN- Fire INventory from NCAR 
(Wiedinmyer)
• QFED - Quick Fire Emissions 

Dataset (NASA)
• GFAS – Global Fire Assimilation 

System (CAMS/ECMWF)
• GFED – Global Fire Emissions 

Database (van der Werf et al.)
• For CMIP6 (1750-2100)

Monthly fire emissions - 2014



Natural	terrestrial	emissions
• VOCs	from	vegetation	(isoprene,	terpenes,	methanol,	etc.)
• Soil	NO
• Volcanoes	(SO2)

Lightning	NO
Ocean	emissions	– DMS,	CO,	VOCs
Dust
Sea	salt

Natural	emissions
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A	biogenic	emissions	model:	MEGANv2.1
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Inputs: 
model-

simulated 
data

or 
observations

Guenther et al., GMD, 2012

LAI: Leaf Area Index
PFT: Plant Functional 

Type

Emissions can 
be calculated 
for 147 
compounds



The MEGAN-v2.1 algorithm is online in many models

Emissions for species i:   Fi = γi ∑εi,j χj
where

γi : emission activity factor, depends on leaf area index (LAI), meteorology (T, solar 

radiation), leaf age, soil moisture, with separate light-dependent and light-

independent factors

εi,j : emission factor at standard conditions for vegetation type (PFT) j

χj : fractional area of PFT j

MEGAN	algorithm	in	a	3D	model
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Isoprene emissions in 2 different models differ greatly due to meteorology 
and vegetation maps

Guenther et al., GMD, 2012



Lightning	is	produced	in	deep	convective	storms,	creating	a	plasma	
leading	to	thermolysis	of	O2 resulting	in	large	NO	emissions	
(1-10	Tg/yr globally)

Often	parameterized	based	on	cloud	top	height
Cloud	resolving	models	might	use	other	approaches	(e.g.,	updraft	

volume,	ice	mass	flux,	etc.
Can	also	use	observations	of	lightning	flashes

https://www2.acom.ucar.edu/dc3 Emmons et al., GMD, 2010

Lightning	NO	emissions
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Dust	and	Sea	salt
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Parameterizations	using	
surface	wind	speeds

Calculated	online	in	
model

Dust:	based	on	soil	
erodibility	maps,	
tuned	to	AOD	
observations

Images from CESM/WACCM:
https://www.acom.ucar.edu/waccm/forecast/



Long-lived	species		- for	tropospheric	chemistry	often	better	to	prescribe	
surface	mixing	ratios	when	sources	and	sinks	are	uncertain,	such	as	for	CH4

Lateral	boundary	conditions	for	regional	models

Stratosphere	– ozone	and	other	long-lived	species	(HNO3,	NOx)	are	
important	source	to	troposphere

Other	Boundary	Conditions
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Dry	Deposition	Velocity
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Varies with surface type (vegetation, ocean, etc.)
Key component of ozone budget
Important for sticky and soluble gases: HNO3, CO, OVOCs, etc.



Wet	deposition
• Scavenging	in	convective	
updrafts

• Rainout:	in-cloud	
scavenging

• Washout:	below-cloud	
scavenging

Highly	soluble	gases	(HNO3)	
and	aerosols	- kinetic	process	
limited	by	mass	transfer

Moderately	soluble	gases:	
dependent	on	effective	Henry’s	
Law	constant

Wet	Deposition
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• Chemical	&	air	quality	forecasts
• Source	attribution	through	“tagging”
• Analysis	of	observations	and	understanding	processes
• Chemistry-climate	coupling

https://www.nps.gov/subjects/air/sources.htm
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Applications



https://atmosphere.copernicus.eu/

Fundamentals of Atmospheric Chemistry and Aerosol Modeling 2018 24



Regional	AQ	forecasts	(e.g.,	AIRPACT,	WSU)
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http://lar.wsu.edu/airpact/gmap/ap5/ap5.html



Source	Attribution

”Tagging”	of	source	type	or	region	allows	identification	of	
source	contributions	to	observations
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Frequently	used	
in	flight	planning	
for	aircraft	
experiments	



Adding	tagging	to	chemical	mechanisms
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Artificial tracers:
CO_fire_10day -> CO2 : k=1/10days, CO emissions from fires

SO2_volcano -> {} : k=1/x, SO2 emissions from active volcano

”Tagged” CO, runs parallel to complete chemistry without affecting it:
CO_fire + OH -> OH : k=k(CO+OH)

Other compounds with simple chemistry can be tagged and added to 
standard chemistry (BC)



Emissions	perturbations
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• For	studying	impacts	of	actually	changing	the	emissions
• To	estimate	source	contributions	from	various	source	types	or	regions

Fiore et al., JGR, 2009

HTAP model intercomparison

Decreased emissions in each 
region by 20% and found 
decrease in ozone



Tracking	ozone	from	NO	emissions
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NO2 + hv à NO + O XNO2 + hv à XNO + OA
O + O2 à O3 OA + O2 à O3A
NO + O3 à NO2 + O2 XNO + O3 à XNO2

NO + O3A à NO
NO2 + OH à HNO3 XNO2 + OH à XHNO3 + OH
HNO3 + OH à NO3 + H2O XHNO3 + OH à XNO3 + OH

Emmons et al., GMD, 2012

Any region or source type of NO 
emissions can be tagged, to 
quantify contribution of ozone 
from that source

Similar tagging of VOCs -> ozone 
also possible (Butler, GMD, 2018)



Aircraft	experiments:	forecasting	and	analysis
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Chemistry-Climate	Interactions	
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Conclusions

• Models	are	tools	to	explore	atmospheric	
processes
• Emissions	are	very	uncertain	and	should	be	
appropriately	selected	and	evaluated	for	each	
study
• Uncertainties	in	other	processes	(deposition,	
chemistry,	clouds,	meteorology)	must	be	kept	in	
mind
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