

Lessons from the DECIM

Andy Parker

Project director – SRM Governance Initiative Honorary senior research fellow – University of Bristol

6 August 2020

The DECIMALS Fund

Building SRM research capacity in the Global South

The DECIMALS Fund

Building SRM research capacity in the Global South

DECIMALS studies

- Studies run for 2.5 years with financial support from SRMGI
- Scientists are given free rein to ask their own research questions
- Data from GLENS and GeoMIP
- Bias correction and statistical downscaling
- SRM modellers as research collaborators

The DECIMALS Fund The SRM research collaborators

Olivier Boucher (Institut Pierre-Simon Laplace) Peter Irvine (UCL) Ben Kravitz (Indiana) Doug MacMartin (Cornell) John Moore (Beijing Normal University) Helene Muri (Norwegian University of S&T) Simone Tilmes (NCAR) Lili Xia (Rutgers) Plus Alan Robock (Rutgers) working on the Bangladesh team

Pinto et al, 2020

Published in Geophysical Research Letters in January 2020 by the South Africa DECIMALS team

Takeaway: In the simulations, SRM would significantly reduce temperature means and extremes. However, the effect on precipitation would not be as linear.

Karami et al, 2020

Published in Geophysical Research Letters in June 2020 by the Iran DECIMALS team

Takeaway: In the simulations, SRM would partially offset the poleward shift of storm tracks induced by global warming, and thus reduce some water stresses in the region.

Da-Allada et al, 2020

Published in Earth's Future in June 2020 by the Benin DECIMALS team

Takeaway: In the simulations, SRM would reduce climate-caused disruptions to rainfall in the Northern and Southern Sahel. However, it would increase disruptions in West Africa, turning a small increase in monsoon rains into a larger decrease.

Reflection 1

Funding research in developing countries returns multiple benefits

Reflection 2 Capacity building is a prerequisite for international governance

Reflection 3 Insights for modelling

1) Makes it hard to tell when impacts are scenario-driven

1) Makes it hard to tell when impacts are scenario-driven

2) Can simultaneously make SRM look too good and too bad!

1) Makes it hard to tell when impacts are scenario-driven

2) Can simultaneously make SRM look too good and too bad!

Proposed solution: model multiple scenarios as standard

Reporting multiple scenarios

	RCP 8.5	Halved warming	Hold temps level	Cooled to PIA
Mean temps				
Extreme heat				
Average rainfall				
Extreme precip				
Sea level rise				
Storm intensity				

Possibilities for expansion

	RCP 8.5	Halved warming	Hold temps level	Cooled to PIA
Mean temps				
Extreme heat				
Average rainfall				
Extreme precip				
Sea level rise				
Storm intensity				
Ozone damage				
Ocean acid.				
SRM side effects				
Soc/pol from CC				

WORK IN PROGRESS – DO NOT DISTRIBUTE

Temperature Heat Maps

Each of these conveys a slightly different message

WORK IN PROGRESS – DO NOT DISTRIBUTE

Precipitation Heat Maps

Each of these conveys a slightly different message

WORK IN PROGRESS – DO NOT DISTRIBUTE

A pluralistic assessment of the effects of geoengineering

Temperature

Precipitation

Putting different variables on the same plot is difficult

WORK IN PROGRESS – DO NOT DISTRIBUTE

