

— BRIGHTENING PROJECT —

Robert Wood, Sarah Doherty, Thomas Ackerman, W Peter Blossey, Matt Wyant

UNIVERSITY of WASHINGTON

Philip Rasch, GK Kulkarni

Pacific Northwest NATIONAL LABORATORY

Sean Garner, Kathryn Murphy, Elif Karatay, Kalai Ramea

Kelly Wanser

Armand Neukermans, **"Old** Gary Cooper, Jack Foster, **SALTS"** Lee Galbraith, Robert Ormond, Sudhanshu Jain

Marine Cloud Brightening: Using sea-salt to brighten low clouds over the ocean

- Adding salt particles increases the number of cloud droplet nuclei
- Makes smaller, more numerous droplets
- Makes clouds more reflective
- (Might make clouds last longer)

Sea salt mist delivered from ships

~30-100nm particles

~10¹⁶ particles/second

Ecologically benign material

Localized, temporary effects

Radiative forcing of climate between 1750 and 2011 Forcing agent

"There is high confidence that **aerosols** and their interactions with clouds have offset a substantial portion of global mean forcing from well-mixed greenhouse gases. They continue to contribute the largest uncertainty to the total [Radiative Forcing] estimate. "

IPCC 5th Assessment, 2013, Summary for Policymakers p. 13-14.

Anthropogenic radiative forcing, IPCC 2013

Anthropogenic

Cloud responses to aerosols

The idea behind MCB:

The reality:

- Cloud response depends strongly on:
 - Size & concentration of injected aerosol
 - Background aerosol conditions
 - Below & above cloud
 - Atmospheric conditions, e.g.:
 - Water availability below/above cloud
 - Cloud precipitating now/recently?
- Perturbed & adjacent clouds can be altered by dynamical responses to initial perturbation

MARINECLOUD

— BRIGHTENING PROJECT —

Aerosol
technologyAerosol-cloud
interactionsClimate
impactsHuman
systems and
social science

- Nozzle lab tests
- Nozzle/spray system modeling
- Spray system design
- Boundary layer plume modeling
- Open-air testing

- Boundary layer modeling
- Ship-track/MCB modeling
- Field experiments
- Spray system optimization

- Regional forcing/effects
- Use for targeted applications
- MCB global forcing estimate
- Improve estimates of forcing via aerosol-cloud interactions
- Research design
- Operational studies
- Social sciences

Challenge: Generate aerosol of the right size & quantity

particles sec⁻¹

 N'_a : added to BL/cloud by a single spray system

$$N_a' = \frac{N_a A H}{\tau}$$

desired increase in N_a : particle concentration (e.g. 300-400 cm⁻³)

H: BL height (~1km)

τ: lifetime of the aerosol in BL (~3 days)

area covered by a single

spray system (2000 km²)

 $\longrightarrow N'_a$: 2-3×10¹⁶ particles/sec Single nozzle: ~10¹² particles/sec 2-3,000 nozzles per spray system

A:

Aerosol of choice: sea salt

Challenge: Generate aerosol of the right size & quantity

The Goldilocks problem...

- Aerosol too small: doesn't activate cloud droplets
- Aerosol too large: the mass of sea salt

 and therefore sea water needed is
 too energy-inefficient
- Aerosol much too large: can actually lead to reduced cloud LWP by increasing precipitation rate
- "Just right": 30nm< diameter < 100nm

 \rightarrow It's difficult to mechanically produce aerosol this small!

Research-grade spray system

* CFD= Computational Fluid Dynamics

* CFD= Computational Fluid Dynamics ** LES = Large Eddy Simulation

Aerosol-Cloud Interaction Studies

Cloud–scale, high resolution modeling studies

Wang et al., 2011

Wang et al., 2011

Stratocumulus cloud cover

Oceans Sc coverage: 22% Cu coverage: 13%

Eastman et al. (2011)

Field studies of aerosol-cloud interactions for MCB: Will be built on extensive experience in studies of aerosol-cloud interactions in "non-controlled" studies

MCB Climate Impacts Assessment

- Implement improved parameterizations in regional & global-scale models
- Utilize "natural experiments" (ship tracks, volcanic plumes) to assess potential efficacy of MCB for increasing Earth reflectivity
- Machine learning for large-scale data analytics, accelerated climate model simulations, and uncertainty quantification
- Assess:
 - Potential for MCB to reduce climate warming
 - Impacts, e.g.:
 - regional temperature, precipitation impacts
 - ocean surface temperature & biological impacts
 - Potential for localized MCB implementation for targeted uses, e.g.:
 - Coral reef protection
 - Reducing hurricane intensity

Learning from MCB research reducing uncertainty in forcing via aerosolcloud interactions in present-day