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Climate Intervention Strategies

What have we learned from a decade of coordinated
GeoMIP and stand-alone-SRM geoengineering simulations?

Jim Haywood?'2, Anthony Jones'?, Andy Jones?, Martin Osborne??
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research?." Earth's Future 4, no. 11 (2016): 543-548.
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FLAW: unknown weather effects;
fails to prevent acidic oceans
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REFLECTIVE CROPS
Planting crops that
reflect more sunlight
READINESS: @ ©

COST: $

FLAW: large land area
needed: fails to prevent
acidic oceans

@SSO0 O0O
ARTIFICIAL TREES
CO.sucked fromairand |
stored underground
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BIOCHAR
Oral carbon waste is
burned and buried
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OCEAN FERTILISATION
Iron filings stimulate CO.-eating plankton

Safety

READINESS: ©©
COST: $S
FLAW: unknown effects on ecosystems
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@ Cooling factor:
potential to
change Earth's
energy budget
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AEROSOLS

FLAW: risk of ozone depletion;
unknown weather effects.
fails to prevent acidic oceans
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FORESTING
Trees absorb CO,
READINESS: @ ©
COST: $

FLAW: large land
area needed
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CLOUD SEEDING
Atomising seawater creates
clouds to reflect sun's rays
READINESS: @0 ©@

COST: $S

FLAW: unknown weather
effects, patchy success; fails
to prevent acidic oceans
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CARBONATE ADDITION
Ground limestone helps
oceans absorb CO,
READINESS: ©©
COST: $S
FLAW: unknown effects
on ecosystems

Cost:

S - Cheap relative to cutting emissions

$S - Significant compared to cost of cutting emissions
S$S$S - Cutting emissions might be cheaper
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l E, I EI I I ErR 4-D plot of geoengineering options: Royal Society Report, 2009.
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E ETER The Geoengineering Model Intrcomparison
Project: GeoMIP:

http://climate.envsci.rutgers.edu/GeoMIP/

The largest set of coordinated modelling studies examining SRM is GeoMIP.

This has evolved from simple-minded experiments where the sun is simply
turned down to complex stratospheric sulphur scheme with
bin/sectional/modal models.

The most recent GeoMIP6 experiments include more realistic specific policy-
relevant scenarios. e.g. turning RCP8.5 temperature (high end warming
scenarios) into RCP4.5 (medium warming scenarios). They are the same
models that are used for global warming projections.


http://climate.envsci.rutgers.edu/GeoMIP/

GeoMIP: was formed because it is difficult to assess inter-model
differences when the forcing is not consistent between models:-

» 86 publications since 2011: http://climate.envsci.rutgers.edu/GeoMIP/publications.html

* First tranche of experiments (G1-G4):
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http://climate.envsci.rutgers.edu/GeoMIP/publications.html

GeoMIP finding #1 (G1 expiment): continued warming in
polar regions and the overcooling of the tropics

abrupt4xCO2-piControl G1—piControl

Some residual
temperature
impacts.... But
relatively small
in magnitude
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GeoMIP: Geoengineering Model Intercomparison Project: G1:

Kravitz et al * G R' 2012 IAGP/SPICE: Royal Society Balancing the radiative forcing from 4xCO2 with solar dimming



Dependence of the resulting distribution of
aerosol on the altitude & latitude of the injection
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Injection closer to the equator->

Need to inject at high altitudes near the Equator to maximise the lifetime of the aerosol.

Jones et al., Impacts of hemispheric solar geoengineering on tropical cyclone frequency, Nature Communications, 2017.



Research that follows: 3

* MacMartin, et al., Management of trade-offs in : _
geoengineering through optimal choice of non- ; 3 ,
uniform radiative forcing. Nature Climate —

Change, 3(4), 365-368.
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https://doi.org/10.1029/2019JD030329

GeoMIP finding #2 (G1 experiment): the termination effect
is potentially a serious issue

G2 (termination phase)
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The global mean temperature reverts back to pre-

geoengineered state within 5-10years on cessation.
Regional warming can be many times the global mean.
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Research that follows:

 Trisos, Christopher H.,
Giuseppe Amatulli, Jessica
Gurevitch, Alan Robock, Lili
Xia, and Brian Zambri.
"Potentially dangerous
consequences for biodiversity
of solar geoengineering
Implementation and
termination." Nature Ecology &
Evolution 2, no. 3 (2018): 475-
482.
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Research that follows:

* Not a single scientist (that | know of) Is suggesting that we can just keep
on emitting fossil-fuels and balance the warming with an ever increasing
veil of sulphate aerosol. Scientists are widely debating “peak-shaving”:-
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Jones, A. C., et al. Earths Future, 2018 A
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Figure 1. Schematic of 21st century global warming trends under various Years
scenarios (credit to David MacKay). Note: the similarity between this schematic
and Figure 2 of Tilmes et al. (2016).



GeoMIP finding #3 (G1 experiment): regional extremes are

ameliorated
Table 3. Efficacy? of G1 for Neutralizing Annual Extremes in
abrupt4 x CO,
Variable Global Land Ocean
TNn 0.87 0.86 0.88 Coldest daily Tmin
TXx 0.89 0.88 0.91 Warmest daily Tmax
Rx5day 0.71 0.77 0.70 5 day consecutive rainfall
CSDI ~1.34 0.0743 —1.55  Cold spell duration
WSDI 0.96 0.92 0.98 Warm spell duration
CDD 0.71 0.77 0.67 Consecutive dry days

3The efficacy e, defined in equation (2), is the fraction
of RMS change in abrupt4 x CO, relative to piControl that

is offset by the solar irradiance reduction in GJ1. The value RMS X

. o _ g1-ca{X)
of e ranges from negative values (indicating differences eX)=1- RIS o 1 — r(X).
are larger in G1 than in abrupt4 x CO5) through 0 (low effi- axcor—ctl(X)

cacy) to 1 (high efficacy). RMS values for each experiment
are provided in Table 2 of the supporting information.

Curry, C. L., et al. 2013. A multimodel examination of climate extremes in an idealized geoengineering experiment.
Journal of Geophysical Research — Atmospheres, 119, 3900-3923. https://doi.org/10.1002/2013JD020648



Research that follows:

 Much more realistic simulations that are policy-relevant
» Using realistic scenarios (not x4 COZ2 balancing) to curb temperature
Increases at 1.5C (Jones et al., 2018) or 2C (Tilmes et al., 2016) :-
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Research that follows:

Normalized climate changes
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A whole basket of
extremes are
ameliorated if you
reduce the
temperature change:

Jones, A. C,, et al. (2018). Regional Climate
Impacts of Stabilizing Global Warming at 1.5
K Using Solar Geoengineering, Earth’s
Future, 6, 230—251,
https://doi.org/10.1002/2017EF000720



GeoMIP finding #4: realistic scenarios are needed

GeoMIP6: Reducing RCP8.5 to RCP4.5 temperatures

Mear-surface air temperature anomalies w.r.t. piControl
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Why G6solar and Gésulphur?

* Lots of models have performed G1 experiments (turning down the sun)
* Obviously these are simplistic.

* Are they too simplistic?
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Impact of stratospheric
SO, injection on N.
Hem. cold-season (Oct-

Difference in October-March near-surface air temperature, 2080-2100 mean (K)
G6sulfur minus G6solar (ensemble means)

Mar) mean surface UKESM1
temperature (cf. = i

Shindell et al. [2004]’s 55°N+

Fig. 2) 350N -
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model SRM at regional scales

to examine impacts, we HAVE -l
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stratospheric chemistry at
reasonable complexity

Even when we do, and the CESM2-WACCM
model behaviour in broad-
scale dynamics is similar,

there are specific inter-modekse |
differences that may be -
important (e.g. USA and 15°N+
Africa temperature

differences between - 000
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A word on single model studies
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E ETER Dangers of Unilateral Stratospheric

Geoengineering

Releasing sulphur dioxide only into the northern hemisphere
stratosphere causes a severe drought across the Sahel.

o .- o
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Releasing sulphur dioxide into the southern hemisphere
causes a significant greening of the Sahel.

Haywood et al (2013) significant shift in African monsoon

rainfall associated with geoengineeering
IAGP/SPICE: Royal Society



UNIVERSITY OF

EXETER

Sahelian precipitation anomalies
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E X ETER So could humanity inject into the
NH to alleviate Sahel drought?
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Injecting into the southern hemisphere
will increase north Atlantic hurricane
frequency by ~30%

Jones et al., Impacts of hemispheric solar geoengineering on tropical cyclone frequency, Nature Communications, 2017.



A word on natural analogues
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There have been many, many advances in both
modelling & observations since Pinatubo 1991

There have been a number of significant stratospheric aerosol
injection events in the last dozen years:

Kasatochi (July 2008, 1.5Mt SO2, high northern latitudes)
Sarychev (June 2009, 1.5Mt SO2, high northern latitudes)
Nabro (June 2011, 1.2Mt SO2, tropics, northern hemisphere)
Raikoke (June 2019, ~1.5Mt SO2, high northern latuitudes)

These allow us to test our models of stratospheric chemistry and transport
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Raikoke in 2019

Simulations (Met Office NAME and NWP
model) include:

Mineral dust (operational NWP model)

Biomass burning aerosol (pyrocumulus)

Ash/Sulphate
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ETER Raikoke in 2019

Anomaly in August stratospheric AOD@550nm
following June Raikoke eruption (50-member mean)
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Conclusions:

* GeoMIP has proved invaluable for inter-model comparisons

. Ge%I\/IIIP is moving to more policy-relevant scenarios using more comprehensive
models.

. 3ing|edmod'el simulations have shown the perils of unilateral geoengineering. Just
on’t do it!

* SAl using SO2 is relatively advanced in terms of our understanding and is
considerably enhanced by explosive volcanic eruptions. To move to other
injection materials e.g. TiO2 etc would (in my opinion) be a mistake.

* Our knowledge gaps have closed considerably. They are now focussed very much
on more regional aspects/extreme event reduction. This allows a more
guantitative approach regarding humanitarian and economic losses against global
warming scenarios.

* A geoengineered world may be imperfect, but may be less imperfect than that
tainted by 150 years of industrial revolution.



